<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=648880075207035&amp;ev=PageView&amp;noscript=1">

Webinar Recording

Optimizing Health Policies with Bayesian Networks: "Test & Treat" vs. Presumptive Treatment of Malaria

Recorded on March 16, 2018.

 

Webinar Materials

Abstract

For diagnostic tests used by clinicians, sensitivity and specificity are known and well-understood quantities. Reasoning with these measures in practice, however, is much less straightforward. This challenge manifests itself in many examples of the "base rate fallacy." Fortunately, Bayes' Rule can perfectly resolve any questions of this kind. As a result, general treatment policies can be established as a function of test results. 

It becomes more challenging when additional uncertainties enter the picture, such as the base rate of a disease not being known. In the example we discuss in this webinar, the prevalence of malaria varies across different geographies and cannot be established due to the absence of local epidemiological data. Additionally, the malaria test in our example has low specificity, which makes it difficult to rule out the disease. Our objective is to develop a Bayesian network model for establishing an optimal general treatment guideline despite these uncertainties. Furthermore, our Bayesian network model will allow us to evaluate under what hypothetical conditions such a policy would need to change and what variables would be most sensitive in this regard.

Caveat

Our discussion of malaria diagnosis and treatment is strictly for methodological illustration purposes. No part of this case study should be considered as medical research or healthcare advice. All numerical values shown in the presentation should be treated as fictional.

Professional BayesiaLab Courses

February 27–28 & March 2, 2019 Dubai, UAE Introductory Course
March 5–7, 2019 Dubai, UAE Advanced Course
March 19–21, 2019 Washington, D.C. Introductory Course
April 2–4, 2019 Amsterdam, Netherlands Introductory Course
May 8–10, 2019 Singapore Introductory Course
May 13–15, 2019 Sydney, Australia Introductory Course
May 21–23, 2019 Paris, France Advanced Course (in French)
June 12–14, 2019 Seattle, WA Introductory Course
June 17–19, 2019 Seattle, WA Advanced Course

Upcoming Seminars, Webinars, and Conferences

Live Webinar February 21, 2019 11:00 a.m. – 12:00 p.m. (CST, UTC-6) Simulation Meta-Modeling with Bayesian Networks
Please check out our archive of recordings of previous events.

7th Annual BayesiaLab Conference

October 7–9, 2019 Durham, NC 3-Day Introductory Course
October 10–11, 2019 Durham, NC 7th Annual BayesiaLab Conference
October 14–16, 2019 Durham, NC 3-Day Advanced Course