<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=648880075207035&amp;ev=PageView&amp;noscript=1">

Webinar Recording

Causality and Certainty in Criminal Sentencing

Recorded on May 4, 2018.

 

Webinar Materials

Abstract

Much has been written about extra-legal factors producing biases in criminal sentencing, such as "are black men sentenced to longer prison terms?" Exploring this question, we must engage in formal causal reasoning, and rephrase it as "does ethnicity cause the length of the sentence?" But, we know that establishing a causal effect without randomized experiments is difficult. And, for the judicial system, all we have is observational data. In this webinar, we explain how Bayesian networks can help formalize causal assumptions, which, however, must be justified purely on theoretical grounds. Given such causal assumptions, a Bayesian network can then facilitate causal inference from observational data.

Koon, Booker, Gall, and Entropy?

Another important angle in this discussion is the fact that criminal justice system is a probabilistic domain, with many elements of uncertainty. Formally quantifying uncertainty (or entropy) is the second major focus of our webinar. Bayesian networks are well-suited for this task, as entropy is a key measure in machine learning networks from data. This can help us understand to what extent characteristics of the crime and the defendant reduce the uncertainty regarding the expected sentence. Of particular interest is how varying degrees of judiciary discretion  as a result of legislative action (e.g., PROTECT Act) and Supreme Court rulings (e.g., Koon, Booker, and Gall)  can be quantified by computing the entropy of sentences.

In this webinar, we examine the data of federal criminal cases related to drug-trafficking received by the United States Sentencing Commission that had sentencing dates between 1996 and 2011. 

BayesiaLab Courses

February 5–7, 2020 Singapore 3-Day Introductory Course
February 10–12, 2020 Singapore 3-Day Advanced Course
March 3–5, 2020 Al Ain, UAE 3-Day Introductory Course
March 9–11, 2020 Al Ain, UAE 3-Day Advanced Course
March 24–26, 2020 Boston, MA, USA 3-Day Introductory Course
April 7–9, 2020 Paris, France 3-Day Introductory Course
May 6–8, 2020 Seattle, WA, USA 3-Day Introductory Course
May 11–13, 2020 Seattle, WA, USA 3-Day Advanced Course
June 15–17, 2020 Paris, France 3-Day Advanced Course
October 5–7, 2020 Toronto, ON, Canada 3-Day Introductory Course
October 13–15, 2020 Toronto, ON, Canada 3-Day Advanced Course

Seminars, Webinars, and Conferences

January 21, 2020
2 p.m. – 5 p.m. (EST, UTC-05)
Free Seminar in Washington, DC Artificial Intelligence for Judicial Reasoning
January 30, 2020
2 p.m. – 5 p.m. (CST, UTC-06)
Free Seminar in Chicago, IL Artificial Intelligence for Judicial Reasoning
Please check out our archive of recordings of previous events

8th Annual BayesiaLab Conference

October 5–7, 2020 Toronto, ON, Canada 3-Day Introductory Course
October 8–9, 2020 Toronto, ON, Canada 8th Annual BayesiaLab Conference
October 13–15, 2020 Toronto, ON, Canada 3-Day Advanced Course