<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=648880075207035&amp;ev=PageView&amp;noscript=1">

Three-Day Introductory Course in Seattle, WA:
Artificial Intelligence with Bayesian Networks & BayesiaLab

Date & Time

  • June 12–14, 2019, 9 a.m. to 5 p.m. (daily)

New: Classroom and Livestream options are now available

  • As an alternative to joining our classroom session in Seattle in person, you can also participate via a simultaneous livestream from anywhere in the world.

Go beyond descriptive analytics and enter the realm of probabilistic and causal reasoning with Bayesian networks. Learn all about designing and machine-learning Bayesian networks with BayesiaLab (see complete course program)

This highly acclaimed course gives you a comprehensive introduction that allows you to employ Bayesian networks for applied research across many fields, such a biostatistics, decision science, econometrics, ecology, marketing science, sensory research, sociology, just to name a few.

The hallmark of this three-day course is that every segment on theory is immediately followed by a corresponding practice session using BayesiaLab. Thus, you have the opportunity to implement on your computer what the instructor just presented in his lecture. This includes knowledge modeling, probabilistic reasoning, causal inference, machine learning, probabilistic structural equation models, plus many more examples.

To date, over 1,000 researchers from all over the world have taken this course (see testimonials). For most of them, Bayesian networks and BayesiaLab have become crucial tools in their research.


BayesiaLab CourseClassroom Option

The traditional classroom setting remains the most popular options to take this course. The small group size ensures that you get plenty of opportunities to ask questions and get one-on-one coaching by the instructor.

If you are affiliated with a university, non-profit organization, or government agency, you may be eligible for special pricing as per the registration form below.

Please note that EU-based businesses from outside France will be exempt from paying VAT upon providing their VAT registration number during the registration process (select first tab). Also, participants from non-EU countries can register without paying VAT (select second tab). Selecting the appropriate tab updates the charges automatically.

Classroom Session Format

  • Classroom sessions are limited to a maximum of 15 participants.
  • Presentation slides and software demos are projected on a large screen.
  • Hardcopy workbooks contain all presentation slides plus exercises.
  • The instructor will be available to coach you one-on-one as you progress through the exercises.
  • You will need to bring their own WiFi-enabled computer/laptop to the classroom session (Windows XP, Vista, 7, 8, 10 or Mac OS X).
  • You will have access to a full 90-day license of BayesiaLab Professional, which needs to be installed prior to the start of the classroom session.
  • You will have access to a complete recording of the session for 90 days after the event.

Livestream Option

Livestream Option

As an alternative to joining our classroom session in Paris in person, you can also participate via a simultaneous livestream from your home or office anywhere in the world.

Please note that EU-based businesses from outside France will be exempt from paying VAT upon providing their VAT registration number during the registration process (select first tab). Also, participants from non-EU countries can register without paying VAT (select second tab). Selecting the appropriate tab updates the charges automatically.

Livestream Session Format

  • The classroom session will be streamed in real-time, i.e., 9 a.m. to 5 p.m. (local time at course venue). 
  • You can watch the content projected in the classroom and simultaneously hear the instructor's voice via a real-time GoToMeeting connection. You will see the presentation slides and software demos shown on screen. 
  • You will have access to a complete recording of the livestream for 60 days after the event.
  • You will also have access to the slides presented during the classroom session for 60 days via the BayesiaLab software.
  • Given the one-way nature of a livestream broadcast, you will not be able to ask questions or actively participate in the classroom discussion. Furthermore, the instructor will not be able to provide you with any of the hands-on support that would be available in the classroom.
  • The livestream video content will be distributed in HD, i.e., in a resolution of 1920 x 1080. The quality on your screen will depend on the speed of your Internet connection. Bayesia cannot the quality or reliability of the livestream on your end.
  • You will need to have a computer running Windows XP, Vista, 7, 8, 10 or Mac OS X to participate in the livestream session and run BayesiaLab.
  • To participate in the exercises, you will have access to a 60-day license of BayesiaLab Education Edition. It is functionally equivalent to the full commercial edition of BayesiaLab Professional used during the training session, with the following exceptions:
    • The number of variables/nodes is limited to 50.
    • The maximum size of a data set for learning is 1,000 rows/records.

Course Agenda


Day 1: Theoretical Introduction


Introduction

  • Bayesian Networks: Artificial Intelligence for Decision Support under Uncertainty
  • Probabilistic Expert System
  • A Map of Analytic Modeling and Reasoning
  • Bayesian Networks and Cognitive Science
  • Unstructured and Structured Particles Describing the Domain
  • Expert Based Modeling and/or Machine Learning
  • Predictive vs. Explanatory Models, i.e., Association vs. Causation
  • Application Examples: Medical Expert Systems, Stock Market Analysis, Microarray Analysis, Consumer Segmentation, Drivers Analysis, and Product Optimization

Examples of Probabilistic Reasoning

  • Cognitive Science: How Our Probabilistic Brain Uses Priors in the Interpretation of Images
  • Interpreting Results of Medical Tests
  • Kahneman & Tversky’s Yellow Cab/White Cab Example
  • The Monty Hall Problem, Solving a Vexing Puzzle with a Bayesian Network
  • Simpson’s Paradox - Observational Inference vs Causal Inference

Simpson's Paradox


Probability Theory

  • Probabilistic Axioms
  • Interpretation with Particles
  • Joint Probability Distribution (JPD)
  • Probabilistic Expert System for Decision Support: Types of Requests
  • Leveraging Independence Properties
  • Product/Chain Rule for Compact Representation of JPD

Chain Rule


Bayesian Networks

  • Qualitative Part: Directed Acyclic Graph
  • Graph Terminology
  • Graphical Properties
  • D-Separation
  • Markov Blanket
  • Quantitative Part: Marginal and Conditional Probability Distributions
  • Exact and Approximate Inference in Bayesian networks
  • Example of Probabilistic Inference: Alarm System

Burglary Example


Building Bayesian Networks Manually

  • Expert-Based Modeling via Brainstorming
  • Why Expert-Based Modeling?
  • Value of Expert-Based Modeling
  • Structural Modeling: Bottom-Up and Top-Down Approaches
  • Parametric Modeling
  • Cognitive Biases
  • BEKEE: Bayesia Expert Knowledge Elicitation Environment

BEKEE


Day 2: Machine Learning—Part 1


Parameter Estimation

Parameter Estimation

  • Maximum Likelihood Estimation
  • Bayesian Parameter Estimation with Dirichlet Priors
  • Smooth Probability Estimation (Laplacian Correction)

Information Theory

Entropy

  • Information is a Measurable Quantity: Log-Loss
  • Expected Log-Loss
  • Entropy
  • Conditional Entropy
  • Mutual Information
  • Symmetric Relative Mutual Information
  • Kullback-Leibler Divergence

Unsupervised Structural Learning

Search Particles

  • Entropy Optimization
  • Minimum Description Length (MDL) Score
  • Structural Coefficient
  • Minimum Size of Data Set
  • Search Spaces
  • Search Strategies
  • Learning Algorithms
    • Maximum Weight Spanning Tree
    • Taboo Search
    • EQ
    • TabooEQ
    • SopLEQ
    • Taboo Order
  • Data Perturbation
  • Example: Exploring the relationships in Body Dimensions
    • Data Import (Typing, Discretization)
    • Definition of Classes
    • Exclusion of a Node
    • Heuristic Search Algorithms
    • Data Perturbation (Learning, Bootstrap)
    • Choice of the Structural Coefficient
    • Console
    • Symmetric Layout
    • Analysis of the Model (Arc Force, Node Force, Pearson Coefficient)
    • Dictionary of Node Positions
    • Adding a Background Image

Supervised Learning

Markov Blanket

  • Learning Algorithms
    • Naive
    • Augmented Naive
    • Manual Augmented Naive
    • Tree-Augmented Naive
    • Sons & Spouses
    • Markov Blanket
    • Augmented Markov Blanket
    • Minimal Augmented Markov Blanket
  • Variable Selection with Markov Blanket
  • Example: Predictions based on body dimensions
    • Data Import (Data Type, Supervised Discretization)
    • Heuristic Search Algorithms
    • Target Evaluation (In-Sample, Out-of-Sample: K-Fold, Test Set)
    • Smoothed Probability Estimation
    • Analysis of the Model (Monitors, Mapping, Target Report, Target Posterior Probabilities, Target Interpretation Tree)
    • Evidence Scenario File
    • Automatic Evidence-Setting
    • Adaptive Questionnaire
    • Batch Labeling

Day 3: Machine Learning—Part 2


Semi-Supervised Learning—Variable Clustering

  • Algorithms
  • Example: S&P 500 Analysis
    • Variable Clustering
      • Changing the number of Clusters
      • Dynamic Dendrogram
      • Dynamic Mapping
      • Manual Modification of Clusters
      • Manual Creation of Clusters
    • Semi-Supervised Learning
    • Search Tool (Nodes, Arcs, Monitors, Actions)

Semi-Supervised Learning


Data Clustering

Data Clustering

  • Synthesis of a Latent Variable
  • Expectation-Maximization Algorithm
  • Ordered Numerical Values
  • Cluster Purity
  • Cluster Mapping
  • Log-Loss and Entropy of the Data
  • Contingency Table Fit
  • Hypercube Cells per State
  • Example: Segmentation of men based on body dimensions
    • Data Clustering (Equal Frequency Discretization, Meta-Clustering)
    • Quality Metrics (Purity, Log-Loss, Contingency Table Fit)
    • Posterior Mean Analysis (Mean, Delta-Means, Radar Charts)
    • Mapping
    • Cluster Interpretation with Target Dynamic Profile
    • Cluster Interpretation with Target Optimization Tree
    • Projection of the Cluster on Other Variables

Probabilistic Structural Equation Models

PSEM3D

  • PSEM Workflow
    • Unsupervised Structural Learning
    • Variable Clustering
    • Multiple Clustering for Creating a Factor Variable (via Data Clustering) per Cluster of Manifest Variables
    • Unsupervised Learning for Representing the Relationships Between the Factors and the Target Variables
  • Example: The French Market of Perfumes
    • Cross-Validation of the Clusters of Variables
    • Displayed Classes
    • Total Effects
    • Direct Effects
    • Direct Effect Contributions
    • Tornado Analysis
    • Taboo, EQ, TabooEQ, and Arc Constraints
    • Multi-Quadrants
    • Export Variations
    • Target Optimization with Dynamic Profile
    • Target Optimization with Tree

About the Instructor

Dr. Lionel Jouffe

Dr. Lionel Jouffe is co-founder and CEO of France-based Bayesia S.A.S. Lionel holds a Ph.D. in Computer Science from the University of Rennes and has been working in the field of Artificial Intelligence since the early 1990s. While working as a Professor/Researcher at ESIEA, Lionel started exploring the potential of Bayesian networks. After co-founding Bayesia in 2001, he and his team have been working full-time on the development BayesiaLab, which has since emerged as the leading software package for knowledge discovery, data mining and knowledge modeling using Bayesian networks. BayesiaLab enjoys broad acceptance in academic communities as well as in business and industry.

Who should attend?

Applied researchers, statisticians, data scientists, data miners, decision scientists, biologists, ecologists, environmental scientists, epidemiologists, predictive modelers, econometricians, economists, market researchers, knowledge managers, marketing scientists, operations researchers, social scientists, students and teachers in related fields.

What's required?

  • Basic data manipulation skills, e.g., with Excel.
  • No prior knowledge of Bayesian networks is required.
  • No programming skills are required. You will use the graphical user interface of BayesiaLab for all exercises.

For a general overview of this field of study, we suggest that you download a free copy of our book, Bayesian Networks & BayesiaLab. Although by no means mandatory, reading its first three chapters would be an excellent preparation for the course.

Video Preview

We have recorded the first 90 minutes of the course to give you a sense of what to expect when signing up for the program. 

 

Terms & Conditions

  • You may cancel your registration for a full refund of the course fees up to 30 days before the start of the course. If you cancel within 30 days of the event, your course fee will not be refunded. However, you will be able to apply 100% of the paid course fees towards future BayesiaLab courses.
  • Accommodation is at the participants' own expense.

Testimonials from Earlier Courses

"I would absolutely recommend this course as a thorough and in-depth introduction to Bayesian Networks and the BayesiaLab package. The small class sizes also contributed to an enjoyable and engaging learning experience."—Brian Potter, Infotools (Introductory Course in Melbourne, November 2015).

"This is one of the best trainings I have ever had! Perfect topic that opens so many opportunities in any domain you could think of. Software is amazing and very intuitive. Presenter is extremely knowledgeable, patient and friendly."—Vladimir Agajanov, Moody's (Introductory Course in New York, January 2016).

"Overall, this training was outstanding. Lionel is a gifted teacher, and it helps that you are showcasing a first rate product. BayesiaLab is the most intuitive and easy-to-use machine-learning software available. It's a first-rate investment."—Felix Elwert, PhD, Vilas Associate Professor of Sociology, University of Wisconsin-Madison (Introductory Course in Chicago, May 2014).

“A must-take course for anyone looking to leverage advanced Bayesian network techniques in virtually any domain.”Alex Cosmas, Chief Scientist, Booz Allen Hamilton (Introductory Course in Los Angeles, June 2011).

“The BayesiaLab software is impressive in its sophistication and multi-faceted abilities as a decision support tool. I had been using it primarily as a modeling tool for deductive analysis. Taking this class opened my eyes to BayesiaLab's incredible data-mining abilities. If you are looking for something that will provide a totally new angle on business decision problems, this is it!”Michael Ryall, PhD, Professor of Strategy and Economics, Rotman Business School, University of Toronto (Introductory Course in Chicago, July 2013).

"This class can only be described as eye-opening, the tool as terrific. Some of the best instruction for the shortest period of time I’ve ever received. A seriously terrific job.” Beau Martin, President of American Choice Modeling (Introductory Course in Chicago, July 2013).