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Introduction

SAYESIA @ESIALAB

Your Decision Partnenr

Our Company Our Product

The Paradigm

BAYESIAN NETWORKS*

Judea Pearl
Cognitive Systems Laboratory
Computer Science Department
University of California, Los Angeles, CA 90024
Judea@cs.ucla.edu

Bayesian networks were developed in the late 1970°s to model distributed processing in
reading comprehension, where both semantical expectations and perceptual evidence must
be combined to form a coherent interpretation. The ability to coordinate bi-directional
inferences filled a void in expert systems technology of the early 1980’s, and Bayesian net-
B ayes I a L a b C O m works have emerged as a general representation scheme for uncertain knowledge [Pearl, 1988,

. Heckerman et al., 1995, Jensen, 1996, Castillo et al., 1997].
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Co-founded in 2001
by Dr. Lionel Jouffe &
Dr. Paul Munteanu
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BAYESIAL AB Teaching Edition

Academic Edition

DeS ktO p Bayesialab 6 Ba)ée{'iill\alltzrrket Code Export Module
Software

Professional

Bayesial.ab
WebSimulator

Web
Application Bayesia Expert

Knowledge Elicitation
Environment
(BEKEE)

Bayesia Engine AP| for

\ Bayesia Engine API for
A P | juseL s Network Learning

Inference
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Frequently Asked Questions @



Presentation slides will be available
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Bayesian Networks & BayesiaLab

A Practical Introduction for Researchers

* Free download:
www.bayesia.com/book

* Hardcopy available on Amazon:
http://amzn.com/0996533303

BayesialLab.com


http://www.bayesia.com/book
http://amzn.com/0996533303

BayesiaLab Courses Around the World

3-Day Introductory BayesiaLab Courses: bayesia.com/events

* September 25-27, 2017
Paris, France

* QOctober 24-26, 2017
New York City

* November 20-22, 2017
Singapore (SOLD OUT) Introductory

C
* November 27-29, 2017 ourse

Sydney, Ausirala Ox

BAYESIALAB
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Credits & Badges

Make sure to check in to get your credit!
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store.bayesia.us
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yesiaLab Store B ialab Store Bayesialab

EAYES‘AI—AB North America Europe Home Page

PRODUCTS

Bayesialab
Professional . ~ P .
Bayesia [ i S

Bayesialab Standard

Bayesialab Academic
Edition

wr
Acadomic ESE
Bayesialab Education

Package
Bayesia Engine

Bayesia WebSimulator

WELCOME TO THE BAYESIALAB STORE
Bayesialab Extensions

Bayesialab Book Bayesialab is suite of powerful Artificial Intelligence programs that provide researchers a

. comprehensive “lab” environment for machine learning, knowledge modeling, analytics, simulation,
Bayesialab Software

- Maintenance &
(?) Support
Technical Support

and optimization — all based on the Bayesian network paradigm,
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“The development of full artificial intelligence could spell the
end of the human race.”—Stephen Hawking, December 2014



Artificial Intelligence a Threat?

Elon Musk (' Follow )
¥ @elonmusk

If you're not concerned about Al safety, you should be. Vastly
more risk than North Korea.

8:29 PM - Aug 11, 2017
O 2,429 1113681 Q) 37,782

BayesialL.ab.com 20




Big Data

Is the New

We need to find it,
Extract it, Refine it, Distribute it and
use it to drive Economic Prosperity

2% DataDriven .
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OUR MACHINES NOW HAVE KNOWLEDGE WE'LLL
NEVER UNDERSTAND







Alien Knowledge?

We used to only not know how our brains work.

Now we also don’t know how our machines work.

BayesialL.ab.com 24




Today’s Objective

Artificial Intelligence solving a Artificial Intelligence as a practical
problem for you, as a “black box.” support for research and reasoning.

BayesialL.ab.com 2b




Artificial Intelligence

Bayesian Networks

Research Reasoning

The systematic investigation into and study of materials and The process of forming conclusions, judgments, or inferences from
sources in order to establish facts and reach new conclusions. facts or premises.

BayesialL.ab.com 26
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The Purpose of Models

Statistical Science

2010, Vol. 25, No. 3, 289-310

DOI: 10.1214/10-STS330

© Institute of Mathematical Statistics, 2010

To Explain or to Predict?

Galit Shmueli

Abstract.  Statistical modeling is a powerful tool for developing and testing
theories by way of causal explanation, prediction, and description. In many
disciplines there is near-exclusive use of statistical modeling for causal ex-
planation and the assumption that models with high explanatory power are
inherently of high predictive power. Conflation between explanation and pre-
diction is common, yet the distinction must be understood for progressing
ientific knowledge. While this distinct? B -
ophy of science, the statistical litera
ny differences that arise in the proces|

Association/Correlation Model Purpose Causation |

Description Prediction Explanation | Simulation |[Attribution [Optimization

Key words and phrases: Explanatory modeling, causality, predictive mod-
cling, predictive power, statistical strategy, data mining, scientific research.

1. INTRODUCTION focus on the use of statistical modeling for causal ex-
planation and for prediction. My main premise is that
the two are often conflated, yet the causal versus pre-
dictive distinction has a large impact on each step of the

Looking at how statistical models are used in dif-
ferent scientific disciplines for the purpose of theory

building and testing, one finds a range of perceptions L . .
statistical modeling process and on its consequences.

ding the relationship bet 1 explanati . .
Tegarding e re:ationsiip between causa_ exp anation Although not explicitly stated in the statistics method-

1 and empirical prediction. In many scientific fields such c . C
a es I a a C O I N : . . ology literature, applied statisticians instinctively sense
. as economics, psychology, education, and environmen- e L . L
that predicting and explaining are different. This article

tal crience ctatictical modele are 11ced almanct evelil




Source of
Models

Model Source
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The End of Theory?
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Machine
Learning

Model Source

Attribution

Explanation

Model Purpose | Causation \

Prediction

Description Simulation Optimization

{ Association/Correlation
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Why
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Machine
Learning

Reasoning:
Why? How? What to do?
Who Is responsible?
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+Domain Knowledge

Description | Prediction Explanation | Simulation |Attribution |Optimization

~ Association/Correlation ) Model Purpose Causation f\
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Bayesian Networks

Model Source

Attribution

Explanation

Model Purpose Causation \

Description | Prediction Simulation Optimization

~ Association/Correlation
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The New Paradigm: Bayesian Networks <

Bayesian Networks
& Bayesialab

STEFAN CONRADY | LIONEL JOUFFE

CAU SALITY BAYESIAN NETWORKS*

Judea Pearl
Cognitive Systems Laboratory
Computer Science Department

University of California, Los Angeles, CA 90024

Judea@cs.ucla.edu

MODELS, REASON[NG

Bayesian networks were developed in the late 1970s to model distributed processing in
reading comprehension, where both semantical expec
be combined to form a coherent interpretation. T
inferences filled a void in Cxpcrt sy stemﬂ Lcchnology ¢
works have et
Heckerman e

" ; " Editors
Studie omputational Intelligence OLIVIER POURRET, PATRICK NAIM
AND BRUCE MARCOT

BAYES'AN Bayesian Networks

finance
kerne A Practical Guide to Applications

R EASO N IN G Dawn E.Holmes

sampling 1guage i C.Jai
amp langu Lakhmi C. Jain (

and algorlth'nﬁs

networks

Innovations in .
Bayesian Networks |

LEARNING

computational inte IN PROBABILITY AND 5

Peter Spirtes,

Clark Glymour, and

David Barber

Richard Scheines
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Introducing Bayesian Networks

Example: Differential Diagnosis of Diseases



The New Paradigm: Bayesian Networks

* A probabilistic graphical model.
* The graph is the model.

* No formulas, no equations!

BayesialLab.com 41




The New Paradigm: Bayesian Networks

Two Components Only:

* Node ‘

cArc I

BayesialLab.com 42




The New Paradigm: Bayesian Networks

Example

* Decision support for the
differential diagnosis of lung
diseases that have common
symptoms:

-~ 47 * Bronchitis
* Pneumonia
* Tuberculosis

* Lung Cancer

Case courtesy of Radswiki, Radiopaedia.org, rID: 12040

BayesiaI_ab_Com All numerical values provided in this example are fictional. 43



The New Paradigm: Bayesian Networks

This is an inference task!

* P(Bronchitis | Symptom,,..., Symptom,_, Risk Factor,..., Risk Factor,)="7
* P(Pneumonia | Symptom,,..., Symptom,, Risk Factor,,..., Risk Factor )=?

HEEIRIRSS | Symptom,,..., Symptom,, Risk Factor,,..., Risk Factor,)=?

Symptom,,..., Symptom, , Risk Factor,,..., Risk Factor)="

* P(Lung Cancer

BayesialLab.com






The New Paradigm: Bayesian Networks

How would such a “inference engine” work?
How do we “perform inference” in this problem domain?

We...

* marginalize
* condition

on the basis of the joint probability distribution of all risk factors,
conditions, symptoms, etc.

BayesialL.ab.com 46







The New Paradigm: Bayesian Networks

Joint Probability Table for Two Variables: P(Fever, Pneumonia)

Fever Pneumonia |Joint Probability
None FALSE 77.5%
None TRUE 0.9%
Low FALSE 15.5%
6 rows
Low TRUE 0.1%
High FALSE 4.9%
High TRUE 1.1%
100.0%

Describes the co-occurrence of
conditions P(Fever and Pneumonia)

BayesiaLab.com All numerical values provided in this example are fictional. 48



The New Paradigm: Bayesian Networks

Marginalizing over Fever

Pneumonia

| Probability (Pneumonia) \

FALSE

97.9%

Pneumonia |Joint Probability
FALSE 77.5% N
TRUE 0.9% N
FALSE 15.5% -
TRUE 0.1%

FALSE 4.9% ]
Py

TRUE

1.1%

Marginalizing over or “discarding” Fever

BayesialL.ab.com

Marginal distribution of Pneumonia

All numerical values provided in this example are fictional.

49



The New Paradigm: Bayesian Networks

Conditioning on Fever=High

Fever Pneumonia |Joint Probability | Pneumonia Joint Probability | P(Pneumonia|Fever=High) ‘

High FALSE 4.9% FALSE 4.9% 82.4%

Conditioning on Fever=High Probability of Pneumonia given Fever=High

BayesiaI_ab_Com All numerical values provided in this example are fictional.



The New Paradigm: Bayesian Networks

Joint Probability: P(Fever, Pneumonia, Tuberculosis, Age, High-Risk)

Variables: Possible States:

* Age °3\

High-Risk Area (for Tuberculosis) ° 2

: This would require a
* Pneumonia *2 P blewith 72 rows
®* Tuberculosis o 2
* Fever e 3

BayesialL.ab.com 51




General Multiplication Rule

Product Rule:

P(A,B) = P(A|B)xP(B)

P(B,A) = P(B|A)xP(A)

We can extend this for three variables:

P(A,B,C) = P(A|B,C)xP(B,C) = P(A|B,C)xP(B|C)xP(C)
and in general to n variables, which gives us the Chain Rule:

P(A,, Ay, oy A) = P(A Ay, ooy A)XP(AyA,, ..., A )xP(A,|A)xP(A,)

BayesialL.ab.com 52




The New Paradigm: Bayesian Networks

Joint Probability:

P(Fever, Pneumonia, Tuberculosis, Age, High-Risk)

Applying the Chain Rule:

P(Fever, Pneumonia, Tuberculosis, Age, High-Risk)=

P (Fever|Pneumonia, Tuberculosis, Age, High-Risk)P(Pneumonia, Tuberculosis, Age, High-Risk)=

P (Fever|Pneumonia, Tuberculosis, Age, High-Risk)P(Pneumonia|Tuberculosis, Age, High-
Risk)P(Tuberculosis, Age, High-Risk)=

P (Fever|Pneumonia, Tuberculosis, Age, High-Risk)P(Pneumonia|Tuberculosis, Age, High-
Risk)P(Tuberculosis|Age, High-Risk)P(Age, High-Risk)=

P (Fever|Pneumonia, Tuberculosis, Age, High-Risk)P(Pneumonia|Tuberculosis, Age, High-
Risk)P(Tuberculosis|Age, High-Risk)P(Age|High-Risk)P (High-Risk)

BayesialL.ab.com 53




The New Paradigm: Bayesian Networks

Joint Probability:

P(Fever, Pneumonia, Tuberculosis, Age, High-Risk)=

robability
Calculus

P(Fever|Pneumonia, Tuberculosis, Age, High-Risk)P(Pneumonia|Tuberculosis, Age, High-
Risk)P(Tuberculosis|Age, High-Risk)P(Age|High-Risk)P(High-Risk)=

P(Fever|Pneumonia, Tuberculosis, A
RiskyR(Tuberculosis|Age, High-Risk)P

s, Age, High-

)P(Pneumonia|

gefHighRisk)P

Domain knowledge: encoding of
independence assumptions

BayesialL.ab.com



The New Paradigm: Bayesian Networks

Joint Probability:

P(Fever, Pneumonia, Tuberculosis, Age, High-Risk)=

P(Fever|Pneumonia, Tuberculosis, AgeHigh-Risk)P(Pneumonia|Fuberewdosis, Age, Hich-
Risk)P(Tuberculosis|Age, High-Risk)P(AgefHigh-Risk)P(High-Risk)

| ]

BayesialL.ab.com

\
P (Fever|Pneumonia, Tuberculosis)

}—U

(
(Pneumonia|Age)
P(Tuberculosis|Age, High-Risk)
(Ag
(

[J>

)
P(High-Risk)

> How can we interpret this?

55




The New Paradigm: Bayesian Networks

Representing the Joint Probability as a Bayesian Network

P(Pneumonia|Age)

P(Age)

<20 20-630 >60
50.000| .000| 20.000

<20

Age False

True

1.000

20-60

99.00
98.0™)

2.000

>60

95.00!

5.000

Fever

34246+124+8=31 vs. /2

P(High-Risk)

False rue
50.0 50.000

P(Tubercu1081s|Age High-Risk)

High-Risk ..

False

True

Age False True

<20 99.000 1.000
20-60 99.500 0.500
>60 99.50 0.500
<20 95.00, 5.000
20-60 97.500 2.500
>60 97.500 2.500

P (Fever|Pneumonia, Tuberculosis)

Pneumonia

False

True

Tuberculosis ~ Absent

False 80.000

True 45.000

False 45.000

True 0.000




The New Paradigm: Bayesian Networks

Representing the Joint Probability as a Bayesian Network

khriskarea ®  The global semantics of Bayesian
networks specifies that the full joint
distribution is given by the product:

dberculosis P(xi,...,xn): HP(xl pal Parent
i Nodes

* Thus, a Bayesian network is a
compact representation of the JPD.

We can marginalize and condition on the basis of the network.

Bayesialab.cc...



The New Paradigm: Bayesian Networks

Factorization

* The only way to deal with large distributions is to constrain the nature of the

variable interactions in some manner, both to render specification and ultimately
inference in such systems tractable.

* The key idea is to specify which variables are independent of others, leading to a
structured factorization of the joint probability distribution.

* Bayesian networks are a way to depict the independence assumptions made in a
distribution.

P(x,,...,x )= HP(xl.

pa,)

BayesialL.ab.com 58







The New Paradigm: Bayesian Networks

Joint Probability:

P(Season, Smoker, Age, High-Risk, Bronchitis, Lung Cancer, Pneumonia, Tuberculosis, Airway Obstruction/Constriction, Lung Lesions, Dyspnea, Fever, X-Ray Abnormalities)

41 X 2x3 X2 X 2 x 2 %X 2 x 2 X 2 X 2 X 2x3 x 2

* This would require a Joint Probability Table with 36,684 rows, i.e.
we would need to specify 36,684 probabilities.

* Instead, we can represent the same Joint Probability Distribution ‘e %"
using a Bayesian network and specify only 63 probabilities. 4
=0

BayesialL.ab.com 60




The New Paradigm: Bayesian Networks

Independence SEVENED
Assumptions Network

Forget
Probability
Calculus!

Domain Bayesian
Knowledge Network

BayesialL.ab.com



The New Paradigm: Bayesian Networks

Smoker
TRUE FALSE

Node:
Variable of Interest

BayesiaLab_Com All numerical values provided in this example are fictional. 62
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The New Paradigm: Bayesian Networks

Node: Lung Cancer
Variable of TRUE FALSE
Interest 5.5% 94.5%

BayesiaLab_com All numerical values provided in this example are fictional. 63



The New Paradigm: Bayesian Networks

Lung Cancer

Discrete & Nonparametric
oo . . Smoker | FALSE TRUE
Probabilistic Relationship e | oo | o
P(Lung Cancer|Smoker) TRUE | 90% 10%

Lung Cancer

BayesiaLab,com All numerical values provided in this example are fictional. 64



The New Paradigm: Bayesian Networks

7‘

gy

Conditions

e

anifestations

Symptoms

BayesiaLab_com All numerical values provided in this example are fictional. 65



The New Paradigm: Bayesian Networks
O O

Sedson Key Properties

* Compact representation of the Joint
Probability Distribution

* No distinction between dependent and
Bronchit ~ : pdrdutosis independent variables

* Bayesian Inference

* Omni-directional Inference
* Nonparametric

Airyay

Constriction/Obstruction
* Probabilistic

‘ 6 * Causal

Dyspnea Fever X-Ray Abnormalities

Lung Lesions

e Nonlinear

BayesialLab.com 66




The New Paradigm: Bayesian Networks

Key Properties of Bayesian Networks

* Representation (or approximation) of the joint probability distribution of all variables.
* No distinction between dependent and independent variables.

* Numerical and categorical variables are treated identically.

* Nonparametric.

Compare to algebraic formula: \
Representation of one variable of the joint probability distribution, i.e. y=f(x)

Dependent — 60 lel

Independen Independen
t t

BayesialLab.com



The New Paradigm: Bayesian Networks

Key Properties of Bayesian Networks

* Omni-directional Inference, I.e. evaluation is always performed in all
directions.

algebraic formula and human intuition \

|”

/ Compare to “uni-directiona

ONE
WAY

Y

y=,6’o ,81371 Enxn

o /

BayesialLab.com 638




The New Paradigm: Bayesian Networks

Omni-Directional Inference

BayesialLab.com 69




&‘V. WOmaJ ﬁd{}/&f PHILOZ)?HICAL

TRANSACTIONS
Bayes’ Theorem for Conditional Probabilities [ 370 ]

quodquc {olum, certa nitri ﬁglm prebere, fed plura
concurrere debere, ut de vero nitro produto dubium
non relinguatar.

L1I. An Effay towards folving a Problem in
the Doférine of Chances. By the late Rev,
My, Bayes, F. R.S. communicated by Mr.
Price, in a Letter o John Canton, 4. M.
F.R. 8.

Dear Sir,

Read Dec. 33, J Now fend you an effay which I have

176 found among the papers of our de-
ceafed friend Mr. Bayes, and which, in my opinion,
has great merit, and well deferves to be preferved.
Experimental philofophy, you will find, is neatly in-
terefted in the fubject of it; and on this account there
feems to be particular reafon for thinking that 2 com=-
munication of it to the Royal Society cannot be im-

H: Hypothesis

E:. Ewunidence

P(H\E)=P(EI|DI(L2)P(H)

nghad, you know, the honour of being a mem-
ber of that illuftrious Society, and was much efteem-
ed by many in it as a very able mathematician. Inan
introdution which he has writ to this Effay, he fays,
that his defign at firft in thinking on the fubject of it
was, to find out a method by which we might judge
concerning the probability that an event has to hap-
»in given circumftances, upon fuppofition that we
nothing concerning it but that, under the fame
circum-

“Probability of

H given E”

BayesialLab.com



Bayesian Networks .
Key Properties
* Bayesian networks are inherently

probabilistic. -

* Evidence and inference are

represented as distributions.

* [nference can be performed with
partial evidence.

BayesialLab.com



The New Paradigm: Bayesian Networks

Key Properties of Bayesian Networks

* Bayesian networks are inherently probabilistic.
* Evidence and inference are represented by distributions.

* |Inference can be performed with partial evidence.

-

Deterministic Compare to algebra ST
Point Estimate Value Input

8 yzﬁo ,81371

BayesialLab.com /2

Single
Value Input




Bayesian Networks

Key Properties of Bayesian Networks

* Bayesian networks can encode causal
direction, algebra cannot.

* Example: Newton’s Second Law of Motion

F=m-a

BayesialLab.com

L]

AXTOMATA

SIVE

LEGESMOTUS

Lex. L

Corpns ausmne perfeerare in flatn fuo !?!fit.;ﬁ'&'.’ﬁ.'ff. el :erw:_:di apifor-
wter it (:J!;?'L'SH}H, mﬁ quatenis awirilus uﬂjh'-,ﬂu rr)g!!m' _ﬂ.w!m
il meutare.

Rojeétilia perfeverant in motibus fuis nifi quatenus a refiften-
tia acris retardantur & vi gravitatis impelluntur deorfum.
Trochus, cujus partes cohzrendo perperio retrahune fefe

a mortibus retilineis , non celfat rotari nifi quatenus ab aere re-
tardatur.  Majora autem Planetarum & Cometarum corpora mo-
tus fuos & progr s & circulares in fpatiis minus refiftentibus
faftos confervane dtius.

Lex. 1L

Mt ationent motis pr‘twrﬁ"m.f
cunelume Tneam rel

¢TI molric i,wprrﬁ?r, &> ﬁa‘r.r' f:-
gt wis ille pneprimits.

/3




The New Paradigm: Bayesian Networks

Limitations of Algebra: Newton’s Second Law of Motion

“vi motrici impressa”

F _F
= — solving for mass m — -
m

Causal Interpretation

Causal Assignment

Not Possible

BayesialLab.com



The New Paradigm: Bayesian Networks

Key Properties of Bayesian Networks

* Bayesian networks can encode causal direction, algebra cannot.

/ Algebra vs. Bayesian Network \
Causal or non-causal? ‘ Causal
\/ F Mass Force

\ Acceleration /

BayesialLab.com VAS)







The New Paradigm: Bayesian Networks

Key Properties of Bayesian Networks

* With a causal Bayesian network we can formally perform causal inference, i.e.
we can simulate interventions through the manipulation of a model.

* This is what is required for formal policy analysis.

See Example 4

BayesialLab.com /8
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Sounds great, but how can |
use a Bayesian network In
practice?



s

BAYESIALAB) S

A desktop software for:

* learning

o editing

o performing inference

e analyzing

* simulating

o optimizing

with Bayesian networks.

BayesialLab.com 81




Mathematical Formalism =» Research Software
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NETWORK



Inference with a Bayesian Network & BayesialLab

Introductory Example:
Differential Diagnosis

~

BayesialLab.com



Inference with a Bayesian Netwgek & BayesialLab

=1
—h
(0]
B
@
>
(@)
(¢]

BayesialLab.com
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Network Data Edit View Learning Inference Analysis Moenitor Tocls Window Help
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Bayesian Networks = Artificial Intelligence
O O

Sedson High-Risk Area

Knowledge Base

* Declarative/Propositional
Knowledge

ng fancer Sheumon * Associational Knowledge

* Causal Knowledge

Inference Engine

Lung Lesions
Constriction/Obstruction ‘

‘ ‘ Expert System = Artificial Intelligence

Dyspnea Fever X-Ray Abnormalities

BayesialLab.com 92




Bayesian Networks = Expert System
O O

Sedson High-Risk Area

Name: Me

M@bMDsymptomcheCKer g:en?;gﬁaylriars ( Start Over E Print H Save Symptoms ﬁ( Take the Tour

'—1. Choose Symptom(s)
i b

- ChastSymptoms; Difficutty beeathing <] Lung cancer (non small cell) -
Muscl
(p:isﬂt;j)cramps oropaams @ cough /0 Lung cancer (small cell) -
Pressure or heaviness &l % L
New onset asthma (+] # ©  Bronchitis -
Bronchitr Lung Cancer \, Nighttime wheezing o Heart attack {male) -

Noisy bre:
Numbnes:

Pain or di

Don't know where
to point?
More symptoms here

Rapid breathing

Airyay
ConstrictionfObstruction

Lung Lesions
Rapid heart rate (pulse)
Shertness of breath

Search Symptoms Slow heart rate (pulse)

Dyspnea Fever X-Ray Abnormalities

BayesialLab.com




Bayesian Networks = Transparent Expert System

FO rm u Ia Higthrea

Change in F3
infecteds on
treatinent Progress from F2 Commenced Background Drug-related Exit
— during treatment treatment (F3) death Jeath rate
d ]MT —_— —_— ~—
F3

MT yMT M — 2
= TFZ ]FZ + UFSIFS - H + )uD + é: i Pneul ; bérdulosis

dr

Force of Cease treatment Viral clearance Progress to F 4

HIV infection (F3) on treatment (F3)  during reatment
e M M M_ M MT MT v
+ Ay +A=ye Ve + VeV t* Trs I

Airyay Lung Lesions
tion/Obstruction

Interpretable

Transparent

Intuitive

Less “cognitive overhead”

X-Ray Abnormalities
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Bayesian Networks = Transparent Expert System
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Bayesian Statistics?

Frequentist Bayesian
Statistics Statistics

Machine-learning _
Bayesian networks is SEVIENET)

“frequentist” Networks

Inference in Bayesian
networks is “Bayesian”

BayesialLab.com
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2 3

Knowledge Discovery & Knowledge Discovery &
Classification Interpretation

=$=2\V/~ S|a NETWIIWTKS

1 4

Knowledge Encoding & Knowledge Encoding, Knowledge
Diagnosis Discovery, and Causal Inference

Explanation Attrlbutlon Optimization

( Association/Correlation | Model Purpose \\ Causation

)
O
.
=
)
A
)
o
o
=
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2 3

Knowledge Discovery & Knowledge Discovery &
Classification Interpretation

)
O
.
=
)
A
)
o
o
=

1 4

Knowled.ge Enqoding & Knowledge Encoding, Knowledge
Diagnosis Discovery, and Causal Inference

Explanation Attrlbutlon Optlmlzatlon

\ Association/Correlation \ \VileYol=] Purpose \'\ Causation
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Example la:
Probabilistic Inference




Probabilistic Inference

Human Reasoning Experiment Judgment
under
(adapted from Kahneman & Tversky, 1980) uncertainty:
Heuristics
and biases

* A cab was involved in a hit-and-run accident at night.

* Two taxicab companies are operating in the city, one
with yellow and one with white taxis:

* 85% are yellow

e 15% are white



Probabilistic Inference

%vitness identified the taxi involved in the a&whitem




Probabilistic Inference

At the Trial

* A witness testifies that taxi
involved in the accident was
white.

* Furthermore, an expert witness
explains that human vision has

an 80% sensitivity in terms of
distinguishing between white and
yellow given light conditions at
the time of the accident.




Probabilistic Inference

You are the jury!

* What is the probability
that the taxi was actually
white?




Probabilistic Inference

Your Answer:

P(Taxi=white | Witness=white)=55%
Typical Answer:

P(Taxi=white | Witness=white)=80%
Correct Answer:

P(Taxi=white | Witness=white)=?



Probabilistic Inference

Abductive Reasoning & Cognitive Bias

Judgment
under
uncertainty:
Heuristics
and biases

BayesialL.ab.com



Probabilistic Inference

* We need to perform diagnostic probabilistic inference, i.e. from effect to cause, to
answer this question.

* Bayes’' Rule allows us to compute the probability P(Tazi=white | Witness=white):

P(E| H)P(H)

PH|E) = P(E)

P(Witness = white | Taxi = white)P(Taxi = white) 3

P(Witness = white)
P(Witness = white | Taxi = white)P(Taxi = white)

P(Taxi = white | Witness = white) =

P(Witness = white | Taxi = white)P(Taxi = white) + P(Witness = white | Taxi = yellow)P(Taxi = yellow)
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Knowledge Modeling

Encoding Expert Knowledge

BayesialL.ab.com



Probabilistic Inference

We encode our domain knowledge regarding the taxi cab example:

Node: Taxi

Variable of BRGEIEY White
Interest 85% 15%




Probabilistic Inference

We encode our domain knowledge regarding the taxi cab example:

Node: Taxi Node: Witness
VEldEl]Nei Yellow [ White VETdEIENe Yellow | White
Interest 85% 15% Interest ? ?




Probabilistic Inference

We encode our domain kno Arc.

Discrete & Nonparametric

Yellow

Witness

Yellow

White

80%

20%

Probabilistic Relationship

Taxi
Yellow
85%

Node:
Variable of
Interest

White
15%

Node:

White

20%

Witness

80%

Variable of

Yellow

White

Interest

?

?



Probabilistic Inference

O

Taxi
| Yellow | White
85.000 15.000

Marginal Distribution

O

We encode our domain knowledge regarding the taxi cab example:

Witnhess
Taxi Yellow White
[ Yellow 80.000 20.000
[ White 20.000|  80.000

Conditional Probability Table




Probabilistic Inference

Inference based on evidence:

O mememp (O

Taxi Witness
| Yellow | Wwhite Taxi Yellow White
85.000 15.000 [ Yellow |  80.000 20.000
o AY R [ White | 20.000 80.000

-




Probabilistic Inference

Performing inference based on observing evidence:

@ === Q

Taxi Witness
| Yellow | Wwhite Taxi | Yellow White
85.000 15.000 Yellow |  80.000 20.000
LAY o 20.000 80.000|

? &=
'-



Probabilistic Inference

Performing inference based on observing evidence:

@ =@

Taxi Withess
| Yellow | Wwhite Taxi Yellow White
85.000 15.000 [ Yellow 80.000 20.000
3 - [ White 20.000 80.000

-



2 3

Knowledge Discovery & Knowledge Discovery &
Classification Interpretation

)
O
.
=
)
A
)
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1 4

Knowled.ge Enqoding & Knowledge Encoding, Knowledge
Diagnosis Discovery, and Causal Inference

Explanation Attrlbutlon Optlmlzatlon

\ Association/Correlation \ \VileYol=] Purpose \'\ Causation

BayesialL.ab.com 118



y 2,
).
b

értainty




Probabilistic Inference

Abductive Reasoning & Cognitive Bias

Judgment
under
uncertainty:
Heuristics
and biases

BayesialL.ab.com



Example 1b: Where is my bag?

Travel Route: Singapore (SIN) — Tokyo (NRT) — Los Angeles (LAX)

PACIFIC

Hnnolulu

11 R0

PACIFIC
OCEAN

BayesialL.ab.com



Where i1s my bag?

My travel progress:

* | check in one piece of luggage in IWWM—
i MONDAY  9:00 AM i
Singapore.

* However, my flight from Singapore to
Tokyo departs with a delay due to a
Typhoon in the South China Sea.

* As aresult, | arrive very late in Narita
and only have a short time to get to
my departure gate for LAX.

BayesialL.ab.com 122
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Control
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510 Tokyo Food Bar
18
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- International
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Books & Magazines
852 Fa-So-La BOOKS
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No. 5 Satellite
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Departure Bus Gate

for Gonnecting
Passengers

Control
(Narth Wing)

Fa-So-La DUTY FREE
No. 3 Satellite

JAPAN DUTY FREE NORTH 2
JAPAN DUTY FREE NORTH 1

Bnnd :m. _

58z 8 22%9ggeg B

ANADUTY FREE SHOP MEN I8 S R

MONTBLANCITUMI
Oltar ra's elothing accassras!
Fashron aiessones)
Fashion & Luxury
(SWAROVSKILACOSTES
FURLAFoll Folie)
LOEWE
BURBERRY
COACH
BVLGARI
Cartier
HERMES
Salvatore Ferragamo
TIFFANY & CO.
PLEATS PLEASE ISSEY MIYAKE/
BAQ BAQ ISSEY MIYAKE
HERMES
BVLGARI
Salvatore Ferragamo

North Wing

MHARITA MORTH _91:!5.[1'

i The duty tree shope and beand
mad mxude an slogantly peaceful
atmosphara

13 Japan Duty Free GINZA
€13 LOTTE DUTY FREE

o3 TAKASHIMAYA DUTY FREE
SHILLA & ANA

E‘-anlce Facililies
{3 Currency Exchange

§20-553 GPA
l:ll Mizuho Bank

@) ATm

§13:N6 Seven Bank
Traveler's Insurance
$40-588 Automatic Policy
h23Nm Sales Terminal
Aelaxation Facilities

€2 Dayrooms & Showers

T Plaate enjoy (ho ude of the
showers and nap rooms when
l .‘ | conncting to intemational
* Mlights or befars boarding.

+12 +14

N0A1 Satellite

€7  Raffine
G4 Narita TraveLounge
Children's Facilities
Kids Park
560 .Mammk i 1t 3 daytane cantar
] ;-rf’ fobe
Japanese Cutture Infroduction Corner
1 Japanese Culture
Imrodu:ﬂon.rEammm Comer
SM-550 ANA Sun‘E LOUNGE
50580 ANA LOUNGE
SM  United Club
38  United Global First Lounge
(CI0  KAL LOUNGE (Korean Air)
R20:H30 DELTA Sky Club



...50/50 chance
that your bag
will make it onto
the flight to L.A.

Where is my bag?

* | manage to get to the gate just
in time and get my boarding
pass for the flight to LAX.

* However, the gate agent in
Narita tells me that my checked
luggage may not make it onto
the flight.

BayesialL.ab.com
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Where is my bag?

* After immigration at LAX, | proceed to the
baggage claim area.

* |Luggage is delivered on the carousel, but,
after 5 minutes, | still do not see my bag.

* What is the probability that | will still get my
bag?



Where is my bag?

Task

* Encode available knowledge into a Bayesian
network.

* Perform probabilistic inference given
observations, i.e. reason from effect to cause
(diagnosis).



Where is my bag?

* After immigration at LAX, | proceed to the
baggage claim area.

* Luggage is delivered on the carousel, a total
of 50 bags in the first 5 minutes, yet | still
do not see my bag.

* What is the probability that | will still get my
bag?



Where Is my bag?

ne (Bags/second)

Unloading Time (minutes) /
~7
Ti lapsed (minutes)
//\
\/)

Pepcent Time Elapsed

]

No. of Bags on Carousel

My Bag on Plahe Percent Delivered

My Bag on Carousel

BayesialL.ab.com



Where is my bag?

More important questions:

* Will the patient ultimately respond to the current treatment?
* Should we continue a search and rescue effort?

* Should we still follow the original business strategy, i.e. “hold the course”?

BayesialL.ab.com 131




Where is my bag?

Key Points

* Encoding of knowledge

* Reasoning under uncertainty

* Reasoning
* from cause to effect (simulation)
* from effect to cause (diagnosis)

* [nter-causal reasoning



Where Is the Artificial
Intelligence here?



Performing inference that’s
Intractable for humans!



H
QUESTIONS
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2 3

Knowledge Discovery & Knowledge Discovery &
Classification Interpretation
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1 4

Knowledge Encoding & Knowledge Encoding, Knowledge
Diagnosis Discovery, and Causal Inference

Explanation Attrlbutlon Optlmlzatlon

\ Association/Correlation \ \VileYol=] Purpose \'\ Causation
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Example 2: Breast Cancer Diagnostics

Knowledge Discovery & Classification ee Chapter



Breast Cancer Diagnostics

Image Analysis of Fine Needle Aspirates

* Sensitivity of Fine Needle Aspiration with visual interpretation varies widely
(65% to 98%)

BayesialL.ab.com



Breast Cancer Diagnostics

Image Analysis of Fine Needle Aspirates Image Attributes

Clump Thickness
Uniformity of Cell Size
Uniformity of Cell Shape
Marginal Adhesion

Single Epithelial Cell Size
Bare Nuclei

Bland Chromatin

Normal Nucleoli

Mitoses

BayesialL.ab.com



Workflow

Sample Uniformity Single
of Cell

Code Thickness | of Gell Size Adhesion Epithelial | Bare Nucle
number Cell Size

Cump Uniformity

Mitoses Class

Chromatin = Nucleoli

1000025 5 1

o 4Wisc@nsin Breast:Cancer
1015425 3 1 3

1016277 [ 8 3

e= ¢ . 4 i 3 . . Database
1017122 8 10 10 8 7 10 9

1018099 1 1 1 1 2 10 3

1018561 2 1 2 1 2 1 3 1 1 2
1033078 2 1 1 1 2 1 1 1 5 2

BayesialL.ab.com 140




Learning=Searching

-
[
A 4

uclei

Bland Chromatin

Normal Nucleoli
Marginal Adhesion

Uniformity of Cell Shape

l/_\)

Marginal Adhesion

Mitoses.

Bland Chromatin Uniformity of Cell Shape

A 4
Normal Nucleoli
Marginal Adhesion

p
»yO

Mitoses

@

o
Bland Chromatin

[

A 4

Normal Nucleoli

Uniformity of Cell Shape

Marginal Adhesion

Normal Nucleoli




Learning=Searching

Number of Possible Networks

e 2 Nodes: 3

BayesialL.ab.com 142




Learning=Searching - o o

Number of Possible Networks

e 2 Nodes: 3

* 3 Nodes: 25 <
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Learning=Searching

Number of Possible Networks

* 2 Nodes: 3

3 Nodes: 25

4 Nodes: 543

5 Nodes: 29,281
6 Nodes: 3.8x10°
7 Nodes: 1.1x10°
8 Nodes: 7.8x1011
9 Nodes: 1.2x101°

o
.
.
.
.
.
.
.
o®

ooooooooooooooooo

Normal Nucleoli .

Marginal Adhesion

10 Nodes: 4.2%x1018 Clump Thickness

BayesialL.ab.com 144




Learning=Searching

Minimum Description Length

* DL(B) is the number of bits
to represent the Bayesian
network B (graph and
probabilities), and

* DL(D|B) is the number of
bits to represent the dataset
D given the Bayesian network
B (likelihood of the data
given the Bayesian network).

Complexity

DL(B)

MDL(B,D)=a-DL(B)+DL(D|B)

Structural Coefficient a

BayesialL.ab.com



Breast Cancer Diagnostics

Workflow

* Data Import
* Tree Discretization
* Supervised Learning — Augmented Markov Blanket
* Network Analysis
* Performance Analysis and Cross-Validation
* Mapping
* Adaptive Questionnaire

* Target Interpretation Tree

BayesialL.ab.com JAXQ)




Objective: A Parsimonious Model

6 Bar clei

Bare Nuclei
Singl¢ Epithelial Cell

22x38=26,244

Mitoses

Singlg Epithelial Cell
Size

Clump Thickhess Clump Thickhess

Mitoses

Uniformity of Cell Size Uniformity of Cell Size

Uniformity of Cell Shape Bland Chromatin Uniformity of Cell Shape

Bland Chromatin

Normal Nucleoli . . Normal Nucleoli
Marginal Adhesion Marginal Adhesion

246+6+6+6+6+6+64+6+4=54 cells 22x38+(8%3)+2=26,270 cells ‘
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BayesiaLab Web$S

®m a

imulator

Bayesialab WebSimulat X 4
€ > O |8

mulator bayesialab.com/# e

Bayesia Adaptive Questionnaire

Uniformity of Cell Size

Unifarmity of Cell Shape

Bare Muclei Class
State v State v State v
'\Ing‘\lﬁ E |'J:l|‘l_;|lﬁl Cell Size Bland Chromatin Normal Nucleol
— State o
Aate v SLATe W 30 i)
Clump Thickness Marginal Adheslon Mitoses
State v State W Stare
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BayesiaLab WebSimulator

i simulator.bayesialab.com

(3

1 - Overall Quality 2 - Garage Space

Mean
e — -t
q Filter

Observed

Information

— Joint Probability N 100"
Observed

3 - Kitchen Quality

A
[ =1

Observed

4 - Size of Living Area

MeAN Mean

Qbserved

5 - No. of Full Baths

6 - No. of Fireplaces

— @ Mean

Observed Observed
7 - Lot Shape 8 - Central Air
@& reguler &
0—0 —mmm
| | @==) Moderately irregular $$5 % "—.,_ Yes
o o @== Slightlyirregular
@@= Regular
9 - Electrical 10 - Garage Type

SalePrice

®(\

(-w 12903

1807967138

\
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Where Is the Artificial
Intelligence here?



Finding a model among a
quintillion possibilities!

g
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Knowledge Discovery & Knowledge Discovery &
Classification Interpretation
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Knowledge Encoding & Knowledge Encoding, Knowledge
Diagnosis Discovery, and Causal Inference

Explanation Attrlbutlon Optlmlzatlon

\ Association/Correlation \ Model Purpose "\ RSN
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See Chapter 7

Knowledge Discovery & Anomaly Detection
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AA AAPL ABC ADI ADK ADP ADSK AEE AEFR AES AET AFL AGN Al AZ ARAN AKS ALL ALTR AMAT AMD AMGN ANT
0.570668 0.46678 0408163 0533252 0425324 0535525 0485613 0531351 0.486749 0400094 0384297 0476417 0465186 0506165 0450875 04315 0533276 0490529 0521889 0541416 0454883 0.388191 0.526454

0.570668 M 0412423 0363121  0.432512 0.45727 0.513374 0453742 0.540668 0487404 0.555778 (0.386198 0505749 0417678 0.533665 0525495 0.433653 | 0691676 0558741 0.443481 0502896 0406542 0357238 0.532022
048678 04124237 0.236667 0.43525 0323588 0.403402 0417302 0340484 0322337 0319482 0289725 0334087 0.328982 0402068 0.340316 038855 0.432112 0351426 0444068 0463454 0385558 0330335 0.437053
0.408163 0.363121 0236667 " 0329262 0298421 0.416281 0.31158  0.440094 (.417974 0347976 0.408529 02094418 0.291646 033699 0.360633 0288028 0.340885 039043 03128401 0309671 0244243 0.38276  0.347773
0533252 0.432512 0.43525 03292627 0321593 04838556 0482746 0425858 0371848 0343594 0314271 0389693 0.366576 0462091 0371835 0426141 0460124 0423266 06591107 0638214 049377 0330517 0.467126
0.425324 0.49727 0323588 0298421 0.321593 " 0.378516 0.322902 0.452433 0.4034052 0.417093 0.305003 0.366817 0.304062 0.366267 (0.358504 0389176 0.4520943 0392224 0352995 0330473 0274791 0.2686671 0.414046
0535525 0.513374 0403402 0.4163881 0.483858 03785167 0.452686 0.542809 0527541 0456288 0.372808 0.50101 0486183 0526886 0507023 0406286 0476395 0514611 0513513 0515278 0.3%4056  0.406387 0.48288
0.495613 0453742 0417302 031158 0.482746 0322902 0452686 "M 0.421395 0402325 0.442238 0.349215 0417223 0.389226 0447525 0405751  0.392804 0.43848 0.41418 0.46149 0497755 0386007 0.333145 0.45554
0531351 0.540868 0340434 0440094 0.425898 0.452433 0.542809 0.421398 "7 0.756735 0.580583 0424766 05133786 0475327 (0474858 047355 0321768 0452686 0537636 0447271 0.436028 031983 0380525 0.465076
0.486749 0457494 0322327 0417974 0371848 0403452 0527541  0.402325 [OFSE735 N 0.565275  0.403458 0.42596 0440173 0419188 0458727 0318872 0422276 0459285 0396228 0417472 0292099 (398822  0.446867
0490094 0.55778 0319482 0.347976 0.343594 0.417093 0.456298 0442238 0590583 0.565Z75 7 0378383  0.4768052 0.40224  0.420327 0453099 034483 0.482532 0476188 0345014 0388017 0315138 0308978 (.438482
0384297 0.386198 0289725 0408529 0.314271 0.305003 0.372908 0.349215 0424766 0.403458 0378383 M7 0370713 0421565 0364347 0420521 0248157 0360531 0427641 0290668 0279035 0275143 0321026 0401321
0476417 0505749 0334087 0.294418 0.389693 0.366817 050101 0.417223 0513378 0.42596 0476892 0.370713 "7 0.418877 0.588516 0588617 0351403 0446767 0634718 (390395 0459462 0364762 0.285856 0.50493
0465186 0417878 0328882 0.391646 0366576 0.304062 0486198 0389226 0475327 0.440173 0.40224 0421565 04188777 0422619 0396071 0323589 0.388558 0443402 0332295 0353542 0347243 0345897 (0.461649
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Example: Knowledge Discovery

Workflow i s b

* Data Import

* Discretization

* Unsupervised Learning

e Structural Interpretation
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Analysis
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Example 3b: Fundamental Stock Analysis

Knowledge Discovery from Financial Statements
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Fundamental Analysis

* Shares

® Shares split adjusted
e Split factor

* Current Assets

* Assets

® Current Liabilities

* Liabilities

* Shareholders equity

* Non-controlling interest
* Preferred equity

* Goodwill & intangibles
* Long-term debt

* Revenue

* Earnings

BayesialL.ab.com

Earnings available for common
stockholders

EPS basic

EPS diluted

Dividend per share

Cash from operating activities
Cash from investing activities
Cash from financing activities
Cash change during period
Cash at end of period

Capital expenditures

Price

Price high

Price low

ROE

ROA

Book value of equity per share
P/B ratio

P/E ratio

Cumulative dividends per share
Dividend payout ratio
Long-term debt to equity ratio
Equity to assets ratio

Current ratio

Net margin

Asset turnover

Free cash flow per share
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Example 3c: Anomaly Detection



The Curse of Dimensionality

e “ ..as dimensionality increases, the distance to the nearest data point
approaches the distance to the farthest data point.”

* |n other words, the contrast in distances of different data points becomes
nonexistent. For high dimensional data sets, this means using outlier detection

methods that are based on nearest neighbor will lead to outlier scores that are
indistinguishable.
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Anomaly Detection with Bayesian Networks

* With a Bayesian network, we can avoid the problem of the nearest/farthest
distance measure, which becomes unreliable in higher dimensions.

* For any new observation, we can compute its likelihood given the network.
This tells us how probable or improbable an observation is.
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Example 3d

ANSUR Il Database




ANSUR |l Database

Dendrogram
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ANSUR |l Database

Mapping
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Where Is the Artificial
Intelligence here?



Finding a single model for
hundreds of variables!



(A\'ESIALAB

$9¢

Coffee Break b



2 3

Knowledge Discovery & Knowledge Discovery &
Classification Interpretation

)
O
.
=
)
A
)
o
o
=

1 4

Knowled_ge Enc_oding & Knowledge Encoding, Knowledge
Diagnosis Discovery, and Causal Inference

Explanation Attrlbutlon Optlmlzatlon

\ Association/Correlation \ Model Purpose "\ RSN
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Example 4a

House Price Analysis



Correlation does not
equal cavsation
for observational
data




Observational Data — Association/Correlation




Observational vs. Causal Inference

Correlation between features
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associations/correlations.

FETF

* A statistical model can approximate the
joint probability distribution of the data
produced by the domain under study.
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* However, with such a statistical model
we can only perform observational
inference, i.e. produce predictions.
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Observational vs. Causal Inference

Observational Inference (Prediction)

d covve

CAUSAL INFERENCE

“given that | see’

[[[[[

Causal Inference (Inte| ,...rean

Madelyn Glymour
Nicholas P. Jewell

WILEY

ambiguous

“given that | do”
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Observational vs. Causal Inference B E A

Ames Dataset: Sale Prices of Single-Family Homes

$700,000

$600,000

$500,000

$400,000

Sale Price

$300,000

$200,000 -

$100,000 -

$0 : : i
2 3

Observational Data — Observational Inference/Prediction
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Observational vs. Causal Inference

Clever Homeowner:

* “I'll add two garages to my house and
increase its value by $142,000”
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Observational vs. Causal Inference
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Observational vs. Causal Inference
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Observational vs. Causal Inference

Observational Inference (Conditioning)

* “When we condition on a variable, we change

]
nothing; we merely narrow our focus to the subset é u

of cases in which the variable takes the value we A

are interested in. What changes, then, is our CAUSAL INFERENCE
perception about of the world, not the world LI\FI)nﬁ;I;ATIS"CS
itself.”

Judea Pearl
Madelyn Glymour
Nicholas P. Jewell

WILEY
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Observational vs. Causal Inference

Causal Inference (Intervention)

* “When we intervene on a variable in a system,
we fix its value. We change the system, and

]
the values of other variables often change as a e"'éu

result.” CAUSAL INFERENCE
IN STATISTICS

A Primer

Judea Pearl
Madelyn Glymour
Nicholas P. Jewell

WILEY
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Observational vs. Causal Inference

Statistical Model = Observational Inference/Prediction

o Regression

Causal Model = Causal Inference/lntervention

???
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Predictive Model: Causal Model:
Observational Inference Causal Inference
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Example 4b

The Effect of Advertising



Causal Inference?

* | exus ran a commercial at
the 2015 Super Bowl.

* Then, the company
conducted a survey* among
auto shoppers to understand
the effect of the Super Bowl
commercial on purchase
behavior.

*fictional example
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Causal Inference?

Dataset: 1,000 Observations, i.e. Survey Responses

Ad Exposure Purchase Gender Test Drive
1 0 1 0
0 1 1 1
1 0 1 1
1 1
0 Non-Experimental, 1
0 Observational Data 0
1 0
0 0
1 0
1 0
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Causal Inference?

Analysis by Cross-Tab

Purchase

Ad Exposure
No
Yes

Regression Analysis

Purchase = —0.15 X Ad Exposure + 0.6
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Causal Inference?

However, analyzing the data by Gender reveals:

Gender Ad Exposure Purchase
Male No
Yes
Female No
Yes

Regression Analysis

Purchase = 0.05 X Ad Exposure + 0.4 X Gender + 0.3
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Causal Inference?

Analyzing the data by Test Drive reveals:

Test Drive Ad Exposure Purchase
N
Yes
N
Yes

Regression Analysis

Purchase = —0.2 X Ad Exposure — 0.09 X Test Drive + 0.67
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Causal Inference?

However, analyzing the data by Gender and Test Drive shows:

Test Drive Gender Ad Exposure Purchase
N
Male > 0
No =
No
Female
Yes
No
Male >
Yes =
No
Female
Yes

Purchase = 0.004 X Ad Exposure + 0.4 X Gender — 0.1 X Test Drive + 0.37
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So, what's the ¢ “given that | see” Tl “given that | see”

Gender
Test Drive Gender Ad Exposure ase |
Vale No 4 30% Male
No Yes L a0% = -
No |0 70% e ) emate
~ ( Yes [ 80% -
No - 30%
Male - .~ : e riro .
Ves Yes L] 20% ‘. B et |
| No | 70%| /] | : o0%
Female - 60%| > 45%

“given that | see”

Test Drive .H" ' &
No .

Yes

Yes
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Predictive Model:
Observational Inference

Causal Model:
Causal Inference

Model Source

Description | Prediction Explanation | Simulation | Attribution |Optimization
- Association/Correlation | Model Purpose | Causation |
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Instead of Data:
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Predictive Model:
Observational Inference

Causal Model:
Causal Inference

Model Source

USE AT YOUR
OWN RISK

Attribution

Prediction Explanation

Description

Association/Correlation \ Model Purpose \

Simulation Optimization

Causation |
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Causal Inference? What's the
story here?

Develop Theory ‘ ‘

Gender Ad Exposure

Test Drive

Purchase
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Causal Inference?

Our Theory!

Gende Ad Exposure

Test Prive

Purchase
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C t II' f C f d More frequently, however, multivariate analysis is

On ro I ng Or On Ou n ers required for evaluating determination, i.e. the effect of
a postulated risk factor on an outcome. One needs to
know what this effect is after controlling for confound-

ing and OA was modified by other potential risk factors, we ing f;zfl\ctqrs One may El]bO \\elbh to assess uhtfz\ther suc:h

performed mult!plc lOngtIC. regression analysis, simulta Controlling variables

neously controlling for multiple potential confounders. Fo

this analysis, age and weight (as MRW) were analyzed a. T agsess the relationship between food insecurity and nutritional
continuous variables unless otherwise specified. and health consequences, it is crucial to ‘control for potential con-

Smokers and nonsmokers were compared using ¢ founding variables. Sociodemographic, economic, psychological,
tests for continuous variables and chi-square for categorica physical functioning, health and behavioral, and adverse health con-
Hip Fractures using the ditions have been known to influence nutrient intakes, anthropom-

o cenl : - - o etry, self-reported health status and nutritional risk (Betts and Vivian
In blvaue_lte models, hasF?hne hypnotic use prec_iu.r{?d a 46 /o a SUOmg  mIVEIse  leiauuisiip  ULLlweolr  uac -
greater risk of future hip fracture, and baseline insomnia

predicted a 45% greater risk (Table 2). After adjustment for prevalence rate of H pylorz infection and child-
age, sex, and all other potential confounders listed in Table hood socioe Conomic class Wthh persisted
)

1, b asehne hvpn()tu. use, insomnia, and Loml)matlom of the

bourhood social factors and health outcomes is A high prevalence rate of H pylor: infection was

exploratory in nature, a variety of approaches shearizad in thaece ssvhna had low encinecoanamic
towards adjusting for confounding factors hav This approach should ensure an unbiased estimate of the relation-

been taken, and the causal pathways the ship between insomnia, depression, and anxiety, while adequately
underlie hypotheses about the effects of neigl controlling for confounding variables. Table 2 shows those vari-
bourhood social factors are often not explici ables that were found to be confounders in cach analysis using the

Bayesia Lab.com above procedures. 'l




Causal Inference?

“Treatment”

“Confounder”

Ad Exposure

Test Prive

Purchase
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ON

Ad Exposure Ad Exposure

Causal Model Intervention Model
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Causal Inference? “Fix Probabilities” ¢«

Causal Inference: Simulating an

- ON

Ad Exposure Ad Exposure

Causal Model Intervention Model
BayesiaLab.wm



Mhffect?

¥
g Q Gender Ad Exposure

So, what’s the advertij

Purchase

Test Drive Gender Ad Exposure Purchase .:_’ No
No 30% &3 Male
Male . + 0 O 5
No Yes 40% . | .
No 70% emaie Yes
~ () Yes :
Male \l{\lo
Yes =
No
Female
Yes
Test Drive Ad Exposure Purchase

No

—0.2

Yes

No

Yes
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Where Is the Artificial
Intelligence here?



No Artificial Intelligence. Here
we need Human Intelligence!
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Knowledge Discovery & Knowledge Discovery &
Classification Interpretation
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Knowled.ge Enqoding & Knowledge Encoding, Knowledge
Diagnosis Discovery, and Causal Inference

Explanation Attrlbutlon Optlmlzatlon

N

( Association/Correlation Model Purpose i Causation

BayesialL.ab.com 216






BayesiaLab Evaluation

We want you to try BayesialLab:

* Restricted trial version:
www.bayesialab.com/trial-download

* You can also apply for an unrestricted
evaluation version:
www. bayesialab.com/evaluation

BayesialLab.com


http://www.bayesialab.com/trial-download
http://www.bayesialab.com/evaluation

Licensing Guide & Price List

www.bayesialab.com/bayesialab-licensing-guide

irhe Bayesi alLab
Ssoftware platform

une 4, 20300

BayesialL.ab.com 219




BayesiaLab Courses Around the World

3-Day Introductory BayesiaLab Courses: bayesia.com/courses

* September 25-27, 2017
Paris, France

* QOctober 24-26, 2017
New York City

* November 20-22, 2017

>in Bapore Intrcoductory
* November 27-29, 2017 ourse

Sydney, Ausirala Ox

BAYESIALAB

BayesialLab.com
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Thank You!

E stefan.conrady@bayesia.us u BayesianNetwork
m linkedin.com/in/stefanconrady n facebook.com/bayesia
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Information Theory
Appendix 1



Information Theory

Information-Theoretic Measures

* Entropy
* Mutual Information

* Arc Force (Kullback-Leibler
Divergence)
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Information Theory

Entropy: a measure of “uncertainty”

H(X)=— P(z)log:P(z)
(Overall NVE) = 1.54

o

. N [ ( )
Overall New Vehicle Experience Overall New Vehicle Experience Overall New Vehicle Experience
Mean: 7.652 Dev: 1.43 Mean: 6.354 Dev: 2.35 Mean: 9.500 Dev: 0.00
Value: 7.652 Value: 6.354 Value: 9.500
2.20% <=5 25.00% <=5 '

15.68% <=7 25.00% <= 7

53.78% <=9 25, 00% ﬂ‘

28.33% >9 25 00%

Marginal Entropy Maximal Entropy Minimal Entropy
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Information Theory

Conditional Entropy -

Overall New Vehicle Experience Overall New Vehicle Experience Overall New Vehicle Experience Overall New Vehicle Experience
Mean: 4.121 Dev: 1.51 Mean: 5.907 Dev: 1.53 Mean: 7.459 Dev: 1.11 Mean: 8.375 Dev: 1.21
Value: 4.121 Value: 5.907 Value: 7.459 Value: 8.375
57.73% <=5 12.65% <=5 0.60% <=5 0.35% | <=5
36.86% <=7 54.20% <=7 15.38% <=7 5.72% <=7
5.20% <=9 29.59% <=9 69.30% <=9 43.67% <=9
0.22% >9 3.56% =9 14.73% =9 50.26% =9
Safety Features Safety Features Safety Features Safety Features
Mean: 2.589 Dev: 0.831 Mean: 5.500 Dev: 0.000 Mean: 7.500 Dev: 0.000 Mean: 9.500 Dev: 0.000
Value: 2.589 Value: 5.500 Value: 7.500 Value: 9.500
100.00% <=5 0.00% | <=5 0.00% | <=5 0.00% | <=5
0.00%| <=7 100.00%'— <=7 0.00% <=7 0.00%| <=7
0.00%| <=9 0.00%| <=9 100.00%‘— <= 0.00%| <=9
0.00% =9 0.00% =9 0.00% =9 100.00% =9
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Information Theory

Mutual Information

\ J \ J \ J
Y Y Y

Mutual Information Marginal Entropy Conditional Entropy
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