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• Introduction

• Frequently Asked Questions

• Motivation: Artificial Intelligence—the Promise and the Peril

• Objective: Artificial Intelligence for Research, Analytics, and Reasoning

• Map of Analytic Modeling: Source & Purpose of Models

• Introducing Bayesian Networks

• Example: Differential Diagnosis of Diseases

• The BayesiaLab Software Platform

• Examples
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Examples

• Knowledge Encoding & Diagnosis

• Knowledge Discovery & Classification

• Knowledge Discovery & Interpretation

• Causal Inference

Today’s Agenda (cont’d)

BayesiaLab.com
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Introduction

BayesiaLab.com

Our Company Our Product

The Paradigm
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Co-founded in 2001
by Dr. Lionel Jouffe &
Dr. Paul Munteanu

BayesiaLab.com
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Teaching Edition

Academic Edition

BayesiaLab 6
Professional

BayesiaLab
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Bayesia Expert 
Knowledge Elicitation 

Environment
(BEKEE)
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Loacations

About Us

BayesiaLab.com

Bayesia S.A.S.
Laval, France
Since 2001

Bayesia USA
Nashville, TN
Since 2010

Bayesia Singapore
Singapore
Since 2012



Frequently Asked Questions
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Presentation slides will be available

BayesiaLab.com
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A Practical Introduction for Researchers

• Free download:

www.bayesia.com/book

• Hardcopy available on Amazon:

http://amzn.com/0996533303

Bayesian Networks & BayesiaLab

BayesiaLab.com

http://www.bayesia.com/book
http://amzn.com/0996533303
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3-Day Introductory BayesiaLab Courses: bayesia.com/events

• September 25–27, 2017

Paris, France

• October 24–26, 2017

New York City

• November 20–22, 2017

Singapore (SOLD OUT)

• November 27–29, 2017

Sydney, Australia

BayesiaLab Courses Around the World

BayesiaLab.com
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Make sure to check in to get your credit!

Credits & Badges

BayesiaLab.com
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store.bayesia.us

BayesiaLab.com
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BayesiaLab.com18
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BayesiaLab.com19

“The development of full artificial intelligence could spell the 
end of the human race.”—Stephen Hawking, December 2014
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Artificial Intelligence a Threat?

BayesiaLab.com
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NO HYPE
ZONE

NEXT 200 SLIDES
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Alien Knowledge

BayesiaLab.com
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We used to only not know how our brains work.

Now we also don’t know how our machines work.

Alien Knowledge?

BayesiaLab.com
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Today’s Objective

BayesiaLab.com

Artificial Intelligence solving a 
problem for you, as a “black box.”

Artificial Intelligence as a practical 
support for research and reasoning.
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A Map of Analytic Modeling

BayesiaLab.com

Y

X

?
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The Purpose of Models

BayesiaLab.com

OptimizationAttributionSimulationExplanationPredictionDescription

Model PurposeAssociation/Correlation Causation
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Source of 
Models

BayesiaLab.com
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The End of Theory?
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Why?
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Black Box

BayesiaLab.com



34BayesiaLab.com

Why does this 
matter?
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The New Paradigm: Bayesian Networks

BayesiaLab.com



39BayesiaLab.com



Example: Differential Diagnosis of Diseases

Introducing Bayesian Networks
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The New Paradigm: Bayesian Networks

BayesiaLab.com

• A probabilistic graphical model.

• The graph is the model.

• No formulas, no equations!
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Two Components Only:

• Node

• Arc

The New Paradigm: Bayesian Networks

BayesiaLab.com
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Example

• Decision support for the 
differential diagnosis of lung 
diseases that have common 
symptoms:

• Bronchitis

• Pneumonia

• Tuberculosis

• Lung Cancer

The New Paradigm: Bayesian Networks

BayesiaLab.com

Case courtesy of Radswiki, Radiopaedia.org, rID: 12040

All numerical values provided in this example are fictional.
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This is an inference task!

• P(Bronchitis | Symptom1,…, Symptomn, Risk Factor1,…, Risk Factorn)=?

• P(Pneumonia | Symptom1,…, Symptomn, Risk Factor1,…, Risk Factorn)=?

• P(Tuberculosis | Symptom1,…, Symptomn, Risk Factor1,…, Risk Factorn)=?

• P(Lung Cancer | Symptom1,…, Symptomn, Risk Factor1,…, Risk Factorn)=?

The New Paradigm: Bayesian Networks

BayesiaLab.com

Probability of

given
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Inference Engine

BayesiaLab.com
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How would such a “inference engine” work?

How do we “perform inference” in this problem domain?

We…

• marginalize

• condition

on the basis of the joint probability distribution of all risk factors, 
conditions, symptoms, etc.

The New Paradigm: Bayesian Networks

BayesiaLab.com
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Joint Probability Table for Two Variables: P(Fever, Pneumonia)

The New Paradigm: Bayesian Networks

BayesiaLab.com

Fever Pneumonia Joint Probability
None FALSE 77.5%
None TRUE 0.9%
Low FALSE 15.5%
Low TRUE 0.1%
High FALSE 4.9%
High TRUE 1.1%

100.0%

Describes the co-occurrence of 
conditions P(Fever and Pneumonia)

6 rows

All numerical values provided in this example are fictional.
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Fever Pneumonia Joint Probability Pneumonia Probability (Pneumonia)
None FALSE 77.5%
None TRUE 0.9%
Low FALSE 15.5% FALSE 97.9%
Low TRUE 0.1% TRUE 2.1%
High FALSE 4.9%
High TRUE 1.1%

Marginalizing over Fever

The New Paradigm: Bayesian Networks

BayesiaLab.com

Marginalizing over or “discarding” Fever Marginal distribution of Pneumonia

All numerical values provided in this example are fictional.



50

Conditioning on Fever=High

The New Paradigm: Bayesian Networks

BayesiaLab.com

Fever Pneumonia Joint Probability Pneumonia Joint Probability P(Pneumonia|Fever=High)
None FALSE 77.5%
None TRUE 0.9%
Low FALSE 15.5%
Low TRUE 0.1%
High FALSE 4.9% FALSE 4.9% 82.4%
High TRUE 1.1% TRUE 1.1% 17.6%

6.0%

Conditioning on Fever=High Probability of Pneumonia given Fever=High

All numerical values provided in this example are fictional.
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Variables:

• Age

• High-Risk Area (for Tuberculosis)

• Pneumonia

• Tuberculosis

• Fever

The New Paradigm: Bayesian Networks

BayesiaLab.com

Possible States:

• 3

• 2

• 2

• 2

• 3

This would require a 
table with 72 rows

Joint Probability: P(Fever, Pneumonia, Tuberculosis, Age, High-Risk)
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Product Rule:

P(A,B) = P(A|B)×P(B)

P(B,A) = P(B|A)×P(A)

We can extend this for three variables:

P(A,B,C) = P(A|B,C)×P(B,C) = P(A|B,C)×P(B|C)×P(C)

and in general to n variables, which gives us the Chain Rule:

P(A1, A2, ..., An) = P(A1|A2, ..., An)×P(A2|A3, ..., An)×P(An-1|An)×P(An)

General Multiplication Rule

BayesiaLab.com
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Joint Probability: 

P(Fever, Pneumonia, Tuberculosis, Age, High-Risk)

Applying the Chain Rule:

P(Fever, Pneumonia, Tuberculosis, Age, High-Risk)=

P(Fever|Pneumonia, Tuberculosis, Age, High-Risk)P(Pneumonia, Tuberculosis, Age, High-Risk)=

P(Fever|Pneumonia, Tuberculosis, Age, High-Risk)P(Pneumonia|Tuberculosis, Age, High-
Risk)P(Tuberculosis, Age, High-Risk)=

P(Fever|Pneumonia, Tuberculosis, Age, High-Risk)P(Pneumonia|Tuberculosis, Age, High-
Risk)P(Tuberculosis|Age, High-Risk)P(Age, High-Risk)=

P(Fever|Pneumonia, Tuberculosis, Age, High-Risk)P(Pneumonia|Tuberculosis, Age, High-
Risk)P(Tuberculosis|Age, High-Risk)P(Age|High-Risk)P(High-Risk)

The New Paradigm: Bayesian Networks

BayesiaLab.com
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Joint Probability: 

P(Fever, Pneumonia, Tuberculosis, Age, High-Risk)=

P(Fever|Pneumonia, Tuberculosis, Age, High-Risk)P(Pneumonia|Tuberculosis, Age, High-
Risk)P(Tuberculosis|Age, High-Risk)P(Age|High-Risk)P(High-Risk)=

P(Fever|Pneumonia, Tuberculosis, Age, High-Risk)P(Pneumonia|Tuberculosis, Age, High-
Risk)P(Tuberculosis|Age, High-Risk)P(Age|High-Risk)P(High-Risk)

The New Paradigm: Bayesian Networks

BayesiaLab.com

Probability 
Calculus

Domain 
Knowledge

Domain knowledge: encoding of 
independence assumptions
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Joint Probability: 

P(Fever, Pneumonia, Tuberculosis, Age, High-Risk)=

P(Fever|Pneumonia, Tuberculosis, Age, High-Risk)P(Pneumonia|Tuberculosis, Age, High-
Risk)P(Tuberculosis|Age, High-Risk)P(Age|High-Risk)P(High-Risk)

The New Paradigm: Bayesian Networks

BayesiaLab.com

P(Fever|Pneumonia, Tuberculosis)
P(Pneumonia|Age)
P(Tuberculosis|Age, High-Risk)

P(High-Risk)
P(Age)

� How can we interpret this?
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High-Risk ... Age

False
<20

False 20-60False
>60

True
<20

True 20-60True
>60

False True
99.000 1.000
99.500 0.500
99.500 0.500
95.000 5.000
97.500 2.500
97.500 2.500

Representing the Joint Probability as a Bayesian Network

The New Paradigm: Bayesian Networks

BayesiaLab.com

P(High-Risk)P(Age)

P(Tuberculosis|Age, High-Risk)P(Pneumonia|Age)

P(Fever|Pneumonia, Tuberculosis)

3+2+6+12+8=31 vs. 72 

<20 20-60 >60
50.000 30.000 20.000

False True
50.000 50.000

Age

<20
20-60
>60

False True
99.000 1.000
98.000 2.000
95.000 5.000

Pneumonia Tuberculosis

False
False

False
True

True
False

True
True

Absent Low High
80.000 15.000 5.000
45.000 50.000 5.000
45.000 5.000 50.000
0.000 50.000 50.000

3 2

6
8

12
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Representing the Joint Probability as a Bayesian Network

The New Paradigm: Bayesian Networks

BayesiaLab.com

• The global semantics of Bayesian 

networks specifies that the full joint 

distribution is given by the product:

• Thus, a Bayesian network is a 

compact representation of the JPD.

Parent 
Nodes

We can marginalize and condition on the basis of the network.
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Factorization

• The only way to deal with large distributions is to constrain the nature of the 
variable interactions in some manner, both to render specification and ultimately 
inference in such systems tractable. 

• The key idea is to specify which variables are independent of others, leading to a 
structured factorization of the joint probability distribution.

• Bayesian networks are a way to depict the independence assumptions made in a 
distribution.

The New Paradigm: Bayesian Networks

BayesiaLab.com
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Is this worth 
the effort?
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Joint Probability: 

• This would require a Joint Probability Table with 36,684 rows, i.e. 

we would need to specify 36,684 probabilities.

• Instead, we can represent the same Joint Probability Distribution 

using a Bayesian network and specify only 63 probabilities.

The New Paradigm: Bayesian Networks

BayesiaLab.com

P(Season, Smoker, Age, High-Risk, Bronchitis, Lung Cancer, Pneumonia, Tuberculosis, Airway Obstruction/Constriction, Lung Lesions, Dyspnea, Fever, X-Ray Abnormalities)

4 2 3 2 2 2 2 2 2 2 2 3 2× × × × × × × × × × × ×
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The New Paradigm: Bayesian Networks

BayesiaLab.com

Probability 
Calculus

Independence 
Assumptions

Bayesian 
Network

Forget 
Probability 
Calculus!

Domain 
Knowledge 

Bayesian 
Network
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The New Paradigm: Bayesian Networks

Node:
Variable of Interest

TRUE FALSE
50% 50%

Smoker

All numerical values provided in this example are fictional.


Sheet1

		Smoker

		TRUE		FALSE

		50%		50%







63BayesiaLab.com

Smoker

The New Paradigm: Bayesian Networks
Node:
Variable of
Interest

TRUE FALSE
5.5% 94.5%

Lung Cancer

All numerical values provided in this example are fictional.
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The New Paradigm: Bayesian Networks

BayesiaLab.com

Arc
Smoke

r Lung Cancer

Discrete & Nonparametric
Probabilistic Relationship
P(Lung Cancer|Smoker)

Smoker FALSE TRUE
FALSE 99% 1%
TRUE 90% 10%

Lung Cancer

All numerical values provided in this example are fictional.
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The New Paradigm: Bayesian Networks

BayesiaLab.com

Risk Factors

Conditions

Manifestations

Symptoms

All numerical values provided in this example are fictional.
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The New Paradigm: Bayesian Networks

BayesiaLab.com

Key Properties

• Compact representation of the Joint 
Probability Distribution

• No distinction between dependent and 
independent variables

• Bayesian Inference

• Omni-directional Inference

• Nonparametric

• Nonlinear

• Probabilistic

• Causal
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Compare to algebraic formula:
Representation of one variable of the joint probability distribution, i.e. y=f(x) 

Key Properties of Bayesian Networks

• Representation (or approximation) of the joint probability distribution of all variables.

• No distinction between dependent and independent variables.

• Numerical and categorical variables are treated identically.

• Nonparametric.

The New Paradigm: Bayesian Networks

BayesiaLab.com

Dependent

Independen
t

Independen
t



68

Compare to “uni-directional” algebraic formula and human intuition 

Key Properties of Bayesian Networks

• Omni-directional Inference, i.e. evaluation is always performed in all 

directions.

The New Paradigm: Bayesian Networks

BayesiaLab.com
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Omni-Directional Inference

The New Paradigm: Bayesian Networks

BayesiaLab.com
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Bayes’ Theorem for Conditional Probabilities

Rev. Thomas Bayes 

BayesiaLab.com

H: Hypothesis

E: Evidence

P(H | E) =
P(E)

P(E | H)P(H)

“Probability of 
H given E”

1763
PHILOSOPHICAL
TRANSACTIONS
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Key Properties

• Bayesian networks are inherently 

probabilistic.

• Evidence and inference are 

represented as distributions.

• Inference can be performed with 

partial evidence.

Bayesian Networks

BayesiaLab.com
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Key Properties of Bayesian Networks

• Bayesian networks are inherently probabilistic.

• Evidence and inference are represented by distributions.

• Inference can be performed with partial evidence.

The New Paradigm: Bayesian Networks

BayesiaLab.com

Compare to algebraic formula Deterministic 
Point Estimate

Single 
Value Input

Single 
Value Input
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Key Properties of Bayesian Networks

• Bayesian networks can encode causal 
direction, algebra cannot.

• Example: Newton’s Second Law of Motion

Bayesian Networks

BayesiaLab.com

F = m $ a
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Limitations of Algebra: Newton’s Second Law of Motion

The New Paradigm: Bayesian Networks

BayesiaLab.com

Causal Interpretation 
Not Possible

Causal Assignment

“vi motrici impressæ”

“Mutationem motus”

solving for mass
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Key Properties of Bayesian Networks

• Bayesian networks can encode causal direction, algebra cannot.

The New Paradigm: Bayesian Networks

BayesiaLab.com

Algebra vs. Bayesian Network
Causal or non-causal? Causal
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Why is this so 
important?
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Key Properties of Bayesian Networks

• With a causal Bayesian network we can formally perform causal inference, i.e. 

we can simulate interventions through the manipulation of a model.

• This is what is required for formal policy analysis.

The New Paradigm: Bayesian Networks

BayesiaLab.com

See Example 4
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Sounds great, but how can I 
use a Bayesian network in 
practice?
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A desktop software for:

• learning

• editing

• performing inference

• analyzing

• simulating

• optimizing

with Bayesian networks.
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The BayesiaLab Workflow

BayesiaLab.com

Mathematical Formalism  Research Software
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Inference with a Bayesian Network & BayesiaLab

Introductory Example:
Differential Diagnosis
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Inference with a Bayesian Network & BayesiaLab

BayesiaLab.com

Risk Factors

Conditions

Manifestations

Symptoms

In
fe

re
nc

e

Inference
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BayesiaLab

BayesiaLab.com

Graph Panel Monitor 
Panel
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Bayesian Networks = Artificial Intelligence

BayesiaLab.com

Knowledge Base

• Declarative/Propositional 

Knowledge

• Associational Knowledge

• Causal Knowledge

Inference Engine 

Expert System  Artificial Intelligence
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Bayesian Networks = Expert System

BayesiaLab.com

Medical Expert 
System
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Bayesian Networks = Transparent Expert System

BayesiaLab.com

Formula Graph

• Interpretable
• Transparent
• Intuitive 
• Less “cognitive overhead”
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Bayesian Networks = Transparent Expert System

BayesiaLab.com
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Bayesian Statistics?

BayesiaLab.com

Frequentist 
Statistics

Bayesian 
Networks

Bayesian 
Statistics

Machine-learning 
Bayesian networks is 

“frequentist”

Inference in Bayesian 
networks is “Bayesian”
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Coffee Break
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Example 1a:
Probabilistic Inference
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www.bayesia.us102

Human Reasoning Experiment
(adapted from Kahneman & Tversky, 1980)

• A cab was involved in a hit-and-run accident at night.

• Two taxicab companies are operating in the city, one 

with yellow and one with white taxis:

• 85% are yellow

• 15% are white

Probabilistic Inference
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• A witness identified the taxi involved in the accident as white…

Probabilistic Inference
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At the Trial

• A witness testifies that taxi 

involved in the accident was 

white.

• Furthermore, an expert witness 

explains that human vision has 

an 80% sensitivity in terms of 

distinguishing between white and 

yellow given light conditions at 

the time of the accident.

Probabilistic Inference
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You are the jury!

• What is the probability 

that the taxi was actually 

white?

Probabilistic Inference



106

Your Answer:

P(Taxi=white | Witness=white)=55%

Typical Answer:

P(Taxi=white | Witness=white)=80%

Correct Answer:

P(Taxi=white | Witness=white)=?

Probabilistic Inference
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Abductive Reasoning & Cognitive Bias

Probabilistic Inference

BayesiaLab.com





See Chapter 4
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• We need to perform diagnostic probabilistic inference, i.e. from effect to cause, to 

answer this question.

• Bayes’ Rule allows us to compute the probability P(Taxi=white | Witness=white):

Probabilistic Inference

P(H | E) =
P(E)

P(E | H)P(H)
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We need our 
inference engine!
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Encoding Expert Knowledge

Knowledge Modeling

BayesiaLab.com
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We encode our domain knowledge regarding the taxi cab example:

Probabilistic Inference

Node:
Variable of
Interest

Yellow White
85% 15%

Taxi
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Arc

We encode our domain knowledge regarding the taxi cab example:

Probabilistic Inference

Node:
Variable of
Interest

Yellow White
85% 15%

Taxi Node:
Variable of
Interest

Yellow White
? ?

Witness
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Arc

We encode our domain knowledge regarding the taxi cab example:

Probabilistic Inference

Node:
Variable of
Interest

Yellow White
85% 15%

Taxi

Node:
Variable of
Interest

Yellow White
? ?

Witness

Arc:
Discrete & Nonparametric
Probabilistic Relationship

Yellow White
Yellow 80% 20%
White 20% 80%

Taxi

Witness
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We encode our domain knowledge regarding the taxi cab example:

Probabilistic Inference

Marginal Distribution Conditional Probability Table
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Inference based on evidence:

Probabilistic Inference

Simulation

Simulation
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Performing inference based on observing evidence:

Probabilistic Inference

Diagnosis

Diagnosis

?
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Performing inference based on observing evidence:

Probabilistic Inference

Diagnosis

Diagnosis
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Knowledge Modeling & Reasoning Under Uncertainty

Example 1b: Where is my bag?

See Chapter 
4



120

Abductive Reasoning & Cognitive Bias

Probabilistic Inference

BayesiaLab.com





See Chapter 4
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Travel Route: Singapore (SIN) → Tokyo (NRT) → Los Angeles (LAX)

Example 1b: Where is my bag?

BayesiaLab.com

NRT

SIN

LAX
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My travel progress:

• I check in one piece of luggage in 

Singapore.

• However, my flight from Singapore to 

Tokyo departs with a delay due to a 

Typhoon in the South China Sea.

• As a result, I arrive very late in Narita 

and only have a short time to get to 

my departure gate for LAX.

Where is my bag?

BayesiaLab.com
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Tokyo Narita

BayesiaLab.com
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• I manage to get to the gate just 

in time and get my boarding 

pass for the flight to LAX.

• However, the gate agent in 

Narita tells me that my checked 

luggage may not make it onto 

the flight.

Where is my bag?

BayesiaLab.com

…50/50 chance 
that  your bag 

will make it onto 
the flight to L.A.
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Airport

BayesiaLab.com
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Baggage Claim

BayesiaLab.com
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• After immigration at LAX, I proceed to the 

baggage claim area.

• Luggage is delivered on the carousel, but, 

after 5 minutes, I still do not see my bag.

• What is the probability that I will still get my 

bag?

Where is my bag?
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Task

• Encode available knowledge into a Bayesian 

network.

• Perform probabilistic inference given 

observations, i.e. reason from effect to cause 

(diagnosis).

Where is my bag?
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• After immigration at LAX, I proceed to the 

baggage claim area.

• Luggage is delivered on the carousel, a total 
of 50 bags in the first 5 minutes, yet I still 

do not see my bag.

• What is the probability that I will still get my 

bag?

Where is my bag?
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Where is my bag?

BayesiaLab.com
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More important questions:

• Will the patient ultimately respond to the current treatment?

• Should we continue a search and rescue effort?

• Should we still follow the original business strategy, i.e. “hold the course”?

Where is my bag?

BayesiaLab.com
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Key Points

• Encoding of knowledge

• Reasoning under uncertainty

• Reasoning

• from cause to effect (simulation)

• from effect to cause (diagnosis)

• Inter-causal reasoning

Where is my bag?
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Where is the Artificial 
Intelligence here?
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Performing inference that’s 
intractable for humans!



135BayesiaLab.com
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Knowledge Discovery & Classification

Example 2: Breast Cancer Diagnostics
See Chapter 

6
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Image Analysis of Fine Needle Aspirates

• Sensitivity of Fine Needle Aspiration with visual interpretation varies widely 

(65% to 98%)

Breast Cancer Diagnostics

BayesiaLab.com
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Image Analysis of Fine Needle Aspirates

Breast Cancer Diagnostics

BayesiaLab.com

Image Attributes

• Clump Thickness

• Uniformity of Cell Size

• Uniformity of Cell Shape

• Marginal Adhesion

• Single Epithelial Cell Size

• Bare Nuclei

• Bland Chromatin

• Normal Nucleoli

• Mitoses
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Workflow

BayesiaLab.com

Wisconsin Breast Cancer 
Database
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Learning=Searching
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Number of Possible Networks

• 2 Nodes: 3

Learning=Searching

BayesiaLab.com
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Number of Possible Networks

• 2 Nodes: 3

• 3 Nodes: 25

Learning=Searching

BayesiaLab.com
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Learning=Searching

BayesiaLab.com

Number of Possible Networks

• 2 Nodes: 3

• 3 Nodes: 25

• 4 Nodes: 543

• 5 Nodes: 29,281

• 6 Nodes: 3.8×106

• 7 Nodes: 1.1×109

• 8 Nodes: 7.8×1011

• 9 Nodes: 1.2×1015

• 10 Nodes: 4.2×1018
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Minimum Description Length

• DL(B) is the number of bits 
to represent the Bayesian 
network B (graph and 
probabilities), and

• DL(D|B) is the number of 
bits to represent the dataset 
D given the Bayesian network 
B (likelihood of the data 
given the Bayesian network).

Learning=Searching

BayesiaLab.com

FitComplexity

DL(B) DL(D|B)

MDL(B,D)=𝛼𝛼⋅DL(B)+DL(D|B)

Structural Coefficient α
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Workflow

• Data Import

• Tree Discretization

• Supervised Learning – Augmented Markov Blanket

• Network Analysis

• Performance Analysis and Cross-Validation

• Mapping

• Adaptive Questionnaire

• Target Interpretation Tree

Breast Cancer Diagnostics

BayesiaLab.com
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Objective: A Parsimonious Model

BayesiaLab.com
2+6+6+6+6+6+6+6+6+4=54 cells 22×38+(8×3)+2=26,270 cells

6

6

6

4

2
6

6

6 6

6

3
3

3

3

33

3 3

2
22×38=26,244
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BayesiaLab WebSimulator

BayesiaLab.com
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BayesiaLab WebSimulator

BayesiaLab.com



150

Where is the Artificial 
Intelligence here?
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Finding a model among a 
quintillion possibilities!



152BayesiaLab.com
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OptimizationAttributionSimulationExplanationPredictionDescription

Model Purpose

M
od

el
 S

ou
rc

e

Association/Correlation Causation

Theory

Data

2
Knowledge Discovery & 

Classification

1
Knowledge Encoding & 

Diagnosis

3
Knowledge Discovery & 

Interpretation

4
Knowledge Encoding, Knowledge 
Discovery, and Causal Inference
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Knowledge Discovery in the Stock Market

BayesiaLab.comKnowledge Discovery & Anomaly Detection

See Chapter 7
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156BayesiaLab.com

The S&P 500, day-over-day returns by stock
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Why is this so difficult?

BayesiaLab.com
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Workflow

• Data Import

• Discretization

• Unsupervised Learning

• Structural Interpretation

Example: Knowledge Discovery

BayesiaLab.com
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Knowledge Discovery from Financial Statements

Example 3b: Fundamental Stock Analysis
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10-K Filings

Fundamental Analysis

BayesiaLab.com
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• Shares

• Shares split adjusted

• Split factor

• Current Assets

• Assets

• Current Liabilities

• Liabilities

• Shareholders equity

• Non-controlling interest

• Preferred equity

• Goodwill & intangibles

• Long-term debt

• Revenue

• Earnings

• Earnings available for common 
stockholders

• EPS basic

• EPS diluted

• Dividend per share

• Cash from operating activities

• Cash from investing activities

• Cash from financing activities

• Cash change during period

• Cash at end of period

• Capital expenditures

• Price

• Price high

• Price low

• ROE

• ROA

• Book value of equity per share

• P/B ratio

• P/E ratio

• Cumulative dividends per share

• Dividend payout ratio

• Long-term debt to equity ratio

• Equity to assets ratio

• Current ratio

• Net margin

• Asset turnover

• Free cash flow per share

Fundamental Analysis

BayesiaLab.com



Example 3c: Anomaly Detection

BayesiaLab.com
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• “…as dimensionality increases, the distance to the nearest data point 

approaches the distance to the farthest data point.”

• In other words, the contrast in distances of different data points becomes 

nonexistent. For high dimensional data sets, this means using outlier detection 

methods that are based on nearest neighbor will lead to outlier scores that are 

indistinguishable.

The Curse of Dimensionality

BayesiaLab.com
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• With a Bayesian network, we can avoid the problem of the nearest/farthest 

distance measure, which becomes unreliable in higher dimensions.

• For any new observation, we can compute its likelihood given the network. 

This tells us how probable or improbable an observation is.

Anomaly Detection with Bayesian Networks

BayesiaLab.com
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BayesiaLab.com167



ANSUR II Database

Example 3d
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Dendrogram

ANSUR II Database

BayesiaLab.com
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Mapping

ANSUR II Database

BayesiaLab.com
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Where is the Artificial 
Intelligence here?
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Finding a single model for 
hundreds of variables!



Coffee Break
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OptimizationAttributionSimulationExplanationPredictionDescription

Model Purpose

M
od

el
 S

ou
rc

e

Association/Correlation Causation

Theory

Data

2
Knowledge Discovery & 

Classification

1
Knowledge Encoding & 

Diagnosis

3
Knowledge Discovery & 

Interpretation

4
Knowledge Encoding, Knowledge 
Discovery, and Causal Inference



House Price Analysis

Example 4a
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www.BayesiaLab.com176
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Causal Identification & Estimation
www.BayesiaLab.com177

Observational Data → Association/Correlation
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Why?

• Observational data only provides 

associations/correlations.

• A statistical model can approximate the 

joint probability distribution of the data 

produced by the domain under study.

• However, with such a statistical model 

we can only perform observational 

inference, i.e. produce predictions.

Observational vs. Causal Inference

BayesiaLab.com
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Observational vs. Causal Inference

BayesiaLab.com

ambiguous

Observational Inference (Prediction)

“given that I see”

Causal Inference (Intervention)

“given that I do”
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www.BayesiaLab.com180
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Garage Doors as P

BA

C
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Ames Dataset: Sale Prices of Single-Family Homes

Observational vs. Causal Inference

BayesiaLab.com

Slope:
≈71,000

Observational Data → Observational Inference/Prediction

See Chapter 5
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Clever Homeowner:

• “I’ll add two garages to my house and 

increase its value by $142,000”

Observational vs. Causal Inference

BayesiaLab.com
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Observational vs. Causal Inference

BayesiaLab.com

+$142,000



185

Observational vs. Causal Inference

BayesiaLab.com

Intervention
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Observational Inference (Conditioning)

• “When we condition on a variable, we change 

nothing; we merely narrow our focus to the subset 

of cases in which the variable takes the value we 

are interested in. What changes, then, is our 

perception about of the world, not the world 

itself.”

Observational vs. Causal Inference

BayesiaLab.com



187BayesiaLab.com



188BayesiaLab.com



189BayesiaLab.com



190

Causal Inference (Intervention)

• “When we intervene on a variable in a system, 

we fix its value. We change the system, and 

the values of other variables often change as a 

result.”

Observational vs. Causal Inference

BayesiaLab.com
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Statistical Model  Observational Inference/Prediction

•

Causal Model  Causal Inference/Intervention

???

Observational vs. Causal Inference

BayesiaLab.com

Regression
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Observational vs. Causal Inference

BayesiaLab.com

Predictive Model:
Observational Inference

Causal Model:
Causal Inference



193BayesiaLab.com



The Effect of Advertising

Example 4b
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• Lexus ran a commercial at 

the 2015 Super Bowl.

• Then, the company 

conducted a survey* among 

auto shoppers to understand 

the effect of the Super Bowl 

commercial on purchase 

behavior.

Causal Inference?

BayesiaLab.com

*fictional example
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Ad Exposure Purchase Gender Test Drive
1 0 1 0
0 1 1 1
1 0 1 1
1 1 1 1
0 0 0 1
0 0 0 0
1 0 0 0
0 1 0 0
1 0 1 0
1 1 0 0

Dataset: 1,000 Observations, i.e. Survey Responses

Causal Inference?

BayesiaLab.com

Non-Experimental,
Observational Data
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Analysis by Cross-Tab

Regression Analysis

Causal Inference?

BayesiaLab.com

-15%
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However, analyzing the data by Gender reveals:

Regression Analysis

Causal Inference?

BayesiaLab.com

+5%

+5%

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0.05 × 𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 0.4 × 𝐺𝐺𝑃𝑃𝐺𝐺𝐴𝐴𝑃𝑃𝑃𝑃 + 0.3

Gender Ad Exposure Purchase
No 30%
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Analyzing the data by Test Drive reveals:

Regression Analysis

Causal Inference?

BayesiaLab.com

-10%

-40%
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However, analyzing the data by Gender and Test Drive shows:

Causal Inference?

BayesiaLab.com

+10%

-10%
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Ad Exposure Purchase
No 60%
Yes 45%

Gender Ad Exposure Purchase
No 30%
Yes 35%
No 70%
Yes 75%

Male

Female

Test Drive Ad Exposure Purchase
No 60%
Yes 50%
No 60%
Yes 30%

Yes

No

Test Drive Gender Ad Exposure Purchase
No 30%
Yes 40%
No 70%
Yes 80%
No 30%
Yes 20%
No 70%
Yes 60%

No

Yes

Male

Female

Male

Female

So, what’s the advertising effect?

BayesiaLab.com

“given that I see” “given that I see”

“given that I see”

−0.15

+0.05

≈ 0

−0.2

“given that I see”
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OptimizationAttributionSimulationExplanationPredictionDescription

Model Purpose
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Association/Correlation Causation

Theory

Data

BayesiaLab.com

Predictive Model:
Observational Inference

Causal Model:
Causal Inference
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Instead of Data:

BayesiaLab.com
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OptimizationAttributionSimulationExplanationPredictionDescription

Model Purpose
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Association/Correlation Causation

Theory

Data

BayesiaLab.com

Predictive Model:
Observational Inference

Causal Model:
Causal Inference
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Develop Theory

Causal Inference?

BayesiaLab.com

What’s the 
story here?
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Our Theory!

Causal Inference?

BayesiaLab.com
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Controlling for Confounders

Controlling for Confounders

BayesiaLab.com
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Our Theory!

Causal Inference?

BayesiaLab.com

“Treatment”
“Confounder”
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Causal Inference: Simulating an Intervention

Causal Inference?

BayesiaLab.com
Causal Model Intervention Model

“Graph Surgery”
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Causal Inference: Simulating an Intervention

Causal Inference?

BayesiaLab.com
Causal Model Intervention Model

“Fix Probabilities”
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So, what’s the advertising effect?
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Where is the Artificial 
Intelligence here?
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No Artificial Intelligence. Here 
we need Human Intelligence!
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Discovery, and Causal Inference



217

Questions?

BayesiaLab.com
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We want you to try BayesiaLab:

• Restricted trial version:

www.bayesialab.com/trial-download

• You can also apply for an unrestricted 

evaluation version: 

www.bayesialab.com/evaluation

BayesiaLab Evaluation

BayesiaLab.com

http://www.bayesialab.com/trial-download
http://www.bayesialab.com/evaluation
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www.bayesialab.com/bayesialab-licensing-guide

Licensing Guide & Price List

BayesiaLab.com
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3-Day Introductory BayesiaLab Courses: bayesia.com/courses

• September 25–27, 2017

Paris, France

• October 24–26, 2017

New York City

• November 20–22, 2017

Singapore

• November 27–29, 2017

Sydney, Australia

BayesiaLab Courses Around the World

BayesiaLab.com
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Thank You!

BayesiaLab.com

stefan.conrady@bayesia.us

linkedin.com/in/stefanconrady facebook.com/bayesia

BayesianNetwork



Appendix 1

Information Theory
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Information-Theoretic Measures

• Entropy

• Mutual Information

• Arc Force (Kullback-Leibler

Divergence)

Information Theory

BayesiaLab.com

See Chapter 
5

Claude Shannon (1916-2001)
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Entropy: a measure of “uncertainty” 

Information Theory

BayesiaLab.com

Overall New Vehicle Experience
Mean: 9.500 Dev: 0.000
Value: 9.500 

Entropy of Overall New Vehicle Experie...

0

H(X) =- P(x) log2P(x)
x X

H(Overall NVE) = 1.54

Marginal Entropy Maximal Entropy Minimal Entropy
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Conditional Entropy

Information Theory

BayesiaLab.com

Overall New Vehicle
Experience

Safety Features
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Mutual Information

Information Theory

BayesiaLab.com

Marginal Entropy Conditional EntropyMutual Information

Overall New Vehicle
Experience

Safety Features
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