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Your Hosts Today

• Stefan Conrady

stefan.conrady@bayesia.us

• Stacey Blodgett

stacey.blodgett@bayesia.us 

Introduction
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Motivation & Background

• Logic vs. Probabilistic Reasoning

Examples of Probabilistic Reasoning

• Example 1: What color is the taxi?

• Bayesian Networks to the Rescue!

• Knowledge Encoding & Inference 

with Bayesian Networks & BayesiaLab

• Example 2: Where is my bag?

Today’s Agenda

stefan.conrady@bayesia.us

50 min.

10 min.
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Webinar Slides & Recording Available

stefan.conrady@bayesia.us
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Try BayesiaLab Today!

• Download Demo Version:

www.bayesialab.com/trial-download

• Apply for Unrestricted Evaluation Version:

www.bayesialab.com/evaluation

BayesiaLab Trial

BayesiaLab.com
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Questions
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User Forum: bayesia.com/community



Motivation & Background: Reasoning
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Aristotle (384-322 BC)

Deductive Logic
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Limitations of Logic

• “Classical logic has no explicit mechanism for representing the degree of 

certainty of premises in an argument, nor the degree of certainty in a 

conclusion, given those premises.”

Source: J. Williamson, Handbook of the Logic of Argument and Inference: The Turn Toward the 
Practical

Deductive Logic

LOGIC IS NOT ENOUGH!
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Inductive vs. Deductive Logic

Strength of Argument

Formal Deductive Logic

Inductive Logic = Probabilistic Reasoning

Weak                                                                              Strong
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Bayes’ Theorem for Conditional Probabilities

2000 Years Later…

stefan.conrady@bayesia.us

H: Hypothesis

E: Evidence

P(H | E) =
P(E)

P(E | H)P(H)

“Probability of 
H given E”

1763
PHILOSOPHICAL
TRANSACTIONS
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Mathematical Formulation of Inductive Reasoning

• “Bayesian inference is important because it provides a normative 
and general-purpose procedure for reasoning under uncertainty.”
Source: Inductive Reasoning: Experimental, Developmental, and Computational 
Approaches, edited by Aidan Feeney and Evan Heit

Probabilistic Reasoning
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Human reasoning

is flawed!

Probabilistic Reasoning



15BayesiaLab.com

Human Cognitive Limitations and Biases Under Uncertainty

Why is this so important?

Human Reasoning ≈ Normative Reasoning

Human Reasoning ≠ Normative ReasoningFALLACIES
Disease Symptom
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• “…despite the mathematization of 
probability in the Enlightenment, 
mathematical probability 
theory remains, to this very day, 
entirely unused in criminal 
courtrooms, when evaluating the 
‘probability’ of the guilt of a 
suspected criminal.”
James Franklin, The Science of Conjecture: 
Evidence and Probability before Pascal, 
2001 The Johns Hopkins Press

250 Years Later…

BayesiaLab.com



Knowledge Modeling & Reasoning Under Uncertainty

Example 1: What Color is the Taxi?
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Human Reasoning Experiment*

• A taxi was involved in a hit-and-run accident at night.

• Only two taxi companies operate in this city, the Yellow Cab Co. 

and the White Cab Co.

• 85% of taxis belong to the Yellow Cab Co. 

• 15% of taxis belong to the White Cab Co.

What Color is the Taxi?

YELLOW CAB CO.

WHITE CAB COMPANY

*adapted from 
Kahneman & 

Tversky, 1980
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• A witness says that the taxi involved in the accident was white.

What Color is the Taxi?
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At the trial in “Logiland,” where formal deductive logic rules…

• Premise 1

• Taxi caused accident 

• Premise 2

• Two taxi companies in town, yellow and white 

• Premise 3

• Accident witness: Taxi was white 

• Conclusion

• White Taxi Co. is responsible for accident

What Color is the Taxi?
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At the Trial in “Likeliland”

• An expert witness explains that human vision 

has an 80% accuracy in terms of distinguishing 

between white and yellow given light conditions 

at the time of the accident.

• P(Witness=white | Color=white)=80%

• P(Witness=yellow | Color=white)=20%

• P(Witness=yellow | Color=yellow)=80%

• P(Witness=white | Color=yellow)=20%

What Color is the Taxi?
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You are the jury in “Likeliland”!

• Given the three premises and the 

expert witness statement, what is 

the probability that the taxi was 

white?

What Color is the Taxi?

WHITE CAB COMPANY
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Results from Webinar Poll

• Correct Answer: 41.38%

What Color is the Taxi?

WHITE CAB COMPANY

Correct Answer
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• We need to perform probabilistic inference to answer this question.

• Bayes’ Rule allows us to compute the probability P(Taxi=white | Witness=white):

What Color is the Taxi?

P(H | E) =
P(E)

P(E | H)P(H)

Correct, but impractical
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Overcoming our Limitations

Bayesian Networks to the Rescue!

Human Reasoning ≈ Normative Reasoning

Use the Bayesian Network for Inference

Encode Domain Knowledge
as Bayesian Network

“Computer-aided 
inference”
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The BayesiaLab Workflow

BayesiaLab.com
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A desktop software for:

• encoding

• learning

• editing

• performing inference

• analyzing

• simulating

• optimizing

with Bayesian networks.
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BayesiaLab

BayesiaLab.com

Graph Panel Monitor 
Panel
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We encode our domain knowledge regarding the taxi cab example:

What Color is the Taxi?

Node:
Variable of
Interest

Yellow White
85% 15%

Taxi
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Arc

We encode our domain knowledge regarding the taxi cab example:

What Color is the Taxi?

Node:
Variable of
Interest

Yellow White
85% 15%

Taxi Node:
Variable of
Interest

Yellow White
? ?

Witness
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Arc

We encode our domain knowledge regarding the taxi cab example:

What Color is the Taxi?

Node:
Variable of
Interest

Yellow White
85% 15%

Taxi

Node:
Variable of
Interest

Yellow White
? ?

Witness

Arc:
Discrete & Nonparametric
Probabilistic Relationship

Yellow White
Yellow 80% 20%
White 20% 80%

Taxi

Witness
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We encode our domain knowledge regarding the taxi cab example:

What Color is the Taxi?

Marginal Distribution Conditional Probability Table
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Inference based on evidence:

What Color is the Taxi?

Simulation

Simulation

Taxi

0.00% Yellow
100.00% White

Witness

20.00% Yellow
80.00% White



34

Performing inference based on observing evidence:

What Color is the Taxi?

Diagnosis

Diagnosis

? Witness

0.00% Yellow
100.00% White
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Performing inference based on observing evidence:

What Color is the Taxi?

Diagnosis

Diagnosis

Witness

0.00% Yellow
100.00% White

Taxi

58.62% Yellow
41.38% White



Knowledge Modeling & Reasoning Under Uncertainty

Example 2: Where is my bag?

See Chapter 4
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Travel Route: Singapore (SIN)  Tokyo/Narita (NRT)  Los Angeles (LAX)

Example 2: Where is my bag?

BayesiaLab.com

NRT

SIN

LAX
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Where is my bag?

Tokyo
Narita
NRT Los Angeles

LAX
Singapore

SIN

?

 

50/50
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Scenario 1

• Luggage delivery starts onto the carousel.

• After 5 minutes, I still do not see my bag.

• What is the probability that I will still get my 

bag?

Where is my bag?



40

But we only have observational data
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Airport

BayesiaLab.com

Is my bag 
in there?
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Results from Webinar Poll

• Correct Answer: 33%

Where is my bag?

Correct Answer
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Proposed Workflow

• Encode the available — albeit very limited 

— knowledge into a Bayesian network.

• Use BayesiaLab to perform probabilistic 

inference given our observations.

Where is my bag?
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Bayesian Network

Where is my bag?
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Scenario 2

• Luggage delivery starts onto the carousel.

• After 5 minutes, I still do not see my bag.

• However, now I see a colleague, who traveled 

on the same itinerary, pick up his bag.

• What is now the probability that I will still 

get my bag?

Where is my bag?
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Scenario 3

• Luggage is delivered on the carousel, a total 
of 50 bags in the first 5 minutes, yet I still 

do not see my bag.

• What is the probability that I will still get my 

bag?

Where is my bag?
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Extended Model

Where is my bag?

BayesiaLab.com
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More important questions:

• Will the patient ultimately respond to the current treatment?

• Should we continue a search and rescue effort?

• Should we still follow the original business strategy, i.e. “hold the course”?

Where is my bag?

BayesiaLab.com



55

Key Points

• Encoding of knowledge

• Reasoning under uncertainty

• Reasoning

• from cause to effect (simulation)

• from effect to cause (diagnosis)

• Inter-causal reasoning

Where is my bag?
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VR

In Conclusion…
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User Forum: bayesia.com/community
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bayesia.com/pricing-2018

BayesiaLab.com
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store.bayesia.us

BayesiaLab.com
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Upcoming Webinars:

• March 9 Bayesian Networks for Risk Management without Data

• March 16 Optimizing Health Policies with Bayesian Networks

• March 23 t.b.d.

Register here: bayesia.com/events

Webinar Series: Friday at 1 p.m. (Central)
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• March 13–15

San Francisco, CA

• May 16–18

Seattle, WA

• June 26–28

Boston, MA

• August 29–31

London, UK

• September 26–28

New Delhi, India

• October 29–31

Chicago, IL

• December 4–6

New York, NY

BayesiaLab Courses Around the World in 2018

Learn More & Register: bayesia.com/events

stefan.conrady@bayesia.us
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San Francisco

Introductory BayesiaLab Course
in San Francisco, California

March 13–15, 2018
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Chicago

6th Annual BayesiaLab Conference in Chicago
November 1–2, 2018
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Thank You!

BayesiaLab.com

stefan.conrady@bayesia.us

linkedin.com/in/stefanconrady facebook.com/bayesia

BayesianNetwork


