BAYESIALAB

The webinar will start at: **13:00:00** The current time is: **13:00:49**

> Central Daylight Time UTC-5

Product Cannibalization

A Prototypical Marketing Science Problem

Introduction

Your Hosts Today

 Stefan Conrady stefan.conrady@bayesia.us

Stacey Blodgett
 stacey.blodgett@bayesia.us

Today's Program

Motivation & Background

- Definitions
- Introductory Example

Representation

- Conceptual Framework: Bayesian Networks
- Probabilistic Reasoning

Learning, Estimation, and Inference

- Causal Reasoning?
- Unsupervised Learning
- Disjunctive Cause Criterion
- Assign Utilities
- Evaluate Policies

stefan.conrady@bayesia.us

Webinar Slides & Recording Available

stefan.conrady@bayesia.us

Motivation & Background

Definitions

- Typically, a new product adversely affects the sales of existing products:
 - If it affects your competitor's products, it's

• If it affects your own products, it's

C

(prices

6

-

Motivation & Background

Introductory Example: 2000 BMW X5

• First SUV in the BMW product portfolio.

Motivation & Background

Introductory Example: New BMW X3 vs. Existing BMW X5

• New, smaller X3 launched in 2004

BAYESIALAB

Bayesian Network Representation

Inference

Obvious, as we encoded that as our domain knowledge into the network.

- Computing the cannibalization effect C of Product B on Product A:
 - $C(B \rightarrow A) = -0.3$ (unit effect)

Can't we do this in Excel?

Motivation & Background

Example: BMW Portfolio of "Utility-Type" Vehicles in 2018

A Fully Connected Network?

BAYESIALAB

Learning & Estimating Cannibalization

Learning & Estimating Cannibalization

Couldn't we just ask auto buyers?

Learning & Estimating Cannibalization

Understanding Cannibalization by Other Means?

- Trade-Ins
 - New and old product not comparable
- Auto Buyer Surveys (2nd Choice)
 - Respondents tend to exaggerate their counterfactual choice ("I would have bought the convertible, but we need the third row.")
- Choice Experiments
 - Hypothetical choices are noncommittal
 - Expensive to conduct

BAYESIALAB

Learning & Estimating Cannibalization

A Fictional Case Study

Learning & Estimating Cannibalization

Case Study Question:

• What is the cannibalization effect of B on A, C, and D?

Learning & Estimating Cannibalization

Daily Sales Data

A desktop software for:

- encoding
- learning
- editing
- performing inference
- analyzing
- simulating
- optimizing

with Bayesian networks.

🕑 Data Import		×
Define Data Structure		
Separators Tab Semicolon Comma Space Other	Encoding UTF-8 V	Options Title Line End of Line Character Control of Line Character
Missing Values N/R Add NR NC Remove Sampling Define Sample	Filtered Values VF Add FV N/A V Learning/Test Define Learning/Test Sets	Consider Different Consecutive separators as a Unique One Consider Different Consecutive Separators as a Unique One Double Quote as String Delimiters Single Quote as String Delimiters Transpose
Data		
A B C 13 1 10 4 9 5 7 7 10 10 0 10 8 0 12 8 9 2 4 9 10 5 7 9 7 3 13 8 3 11 10 3 7 7 4 11 4 7 10	D 10 7 8 11 13 8 6 9 9 9 11 11 11 7 11 11 11 11 11 11 11 11 11 1	^
	Cancel Previous Next	Save Finish

Data Import Wizard

🛂 Data Import							×
Define Variable Type							
Type O Not Distributed	Action Columns with Mis	sing Values	Information Number of Rows	5001	100.00%		
O Discrete	All not Distri	buted	Not Distributed	0	0.00%		
 Continuous 	All Discre	ete	Continuous	4	100.00%		
○ Weight	All Continu	JOUS	Others	. 0	0.00%		
O Learning/Test			Missing Values	0	0.00%		
			Filtered Values	0	0.00%		
O Row Identifier							
Data	-	-					
A B	С	D					
13 1	10	10					^
7 7	5	8					
10 0	10	11					
8 0	12	13					
8 9	2	8					
4 9	10	6					
5 7	9	9					
7 3	13	9					
0 J	7	11					
7 4	11	7					
4 7	10	11					
5 11	9	12					
10 6	5	8					~
L							_
		Cancel P	Previous Next	Sav	ve Fi	nish	

Variable Type Definition

Discretization

<mark>2</mark> Baye	siaLab ·	- Ass	ociate	d graph 2.	xbl												
Network	Data	Edit	View	Learning	Inference	Tools	Window	Help									
	🖫 🍓		χ 🕻	Mis	sing Values	Proces	sing	> : (ڻ د	 •	💉 💽 🔇) 🖗 🖪	۹ 🖉	8 🔿 🌒	• 🔷 🛛	v 🗄 🤤	Ū.

🗋 🗀 🔚 🍓 į 🔏 🍕	Missing Values Processing >	F O O : 🕾 🖻 O 🖍 🖻			
Associated graph 2.xbl *	Stratification			- 6	P 💽
	Discretization				
	Binarization				
	Generate Node Values				
	Linearize Node Values				
	Generate Prior Samples				
	Parameter Estimation				
	Unsupervised Structural Learning	Maximum Spanning Tree			
	Supervised Learning	Taboo			
	Data Perturbation	EQ	-		
	Clustering	SopLEQ			
	Learn Static Policy	Taboo Order			

Unsupervised Learning Using the EQ Algorithm

Ľ	
V	Associa

 \times

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

🕐 😥 Associa...

Disjunctive Cause Criterion

NIH Public Access Author Manuscript

Biometrics. Author manuscript; available in PMC 2012 December 1.

Published in final edited form as: *Biometrics.* 2011 December ; 67(4): 1406–1413. doi:10.1111/j.1541-0420.2011.01619.x.

A new criterion for confounder selection

Tyler J. VanderWeele and

Departments of Epidemiology and Biostatistics, Harvard School of Public Health 677 Huntington Avenue, Boston, MA 02115, Phone: 617-432-7855; Fax: 617-4321884

Ilya Shpitser

Department of Epidemiology, Harvard School of Public Health 677 Huntington Avenue, Boston, MA 02115

Tyler J. VanderWeele: tvanderw@hsph.harvard.edu

Abstract

We propose a new criterion for confounder selection when the underlying causal structure is unknown and only limited knowledge is available. We assume all covariates being considered are pretreatment variables and that for each covariate it is known (i) whether the covariate is a cause of treatment, and (ii) whether the covariate is a cause of the outcome. The causal relationships the covariates have with one another is assumed unknown. We propose that control be made for any covariate that is either a cause of treatment or of the outcome or both. We show that irrespective of the actual underlying causal structure, if any subset of the observed covariates suffices to control

NIH-PA Auti

Disjunctive Cause Criterion

VanderWeele and Shpitser (2011)

"We propose that control be made for any [pre-treatment]
 covariate that is either a cause of treatment or of the outcome or both."
 Confounder
 Confounder

Implementation in BayesiaLab:
 Likelihood Matching on Confounders in
 Direct Effects Analysis
 → Causal Effect, i.e., the Cannibalization Rate

IMPORTANT ASSUMPTION: NO UNOBSERVED CONFOUNDERS

Cannibalized Product

Associa...

Associa...

🕐 📝 Associa..

Associa...

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

□ 🗁 🖬 🖕 🖞 👘 👘 舯 舶 🖉 戶 戶 座 🗮 😂 🕐 🔍 🗨 🔍 🖉 🐼 🔍 🔍 🔍 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉

🕐 📝 Associa...

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

1:0 🔍 📥 🔂

🔀 BayesiaLab - Associated graph 2.xbl

🕐 📝 Associa...

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

1:0 🔍 📥 🔂

Network Data Edit View Learning Inference Tools Window Help

□ 🗁 🖬 🎍 🐰 🗅 🛍 ← 🖻 Ѧ 🖉 🔎 🖉 🗮 🗰 😃 🎱 🕲 🚔 👄 🖉 💽 🚳 🔯 📎 🔯 🖕 🗇 🖉 🛬 😑 🖉

Associated graph 2.xbl *

Adding a Decision Node

1:0 🔍 📥

-

- 🗆 X

Network Data Edit View Learning Inference Tools Window Help

□ 🗁 🖬 🎍 🐰 🗅 🛍 ಈ 🏘 🖉 🔎 🖉 🗮 🗰 👙 🎱 🕲 🚔 🔿 🖉 💽 🎯 🐼 💽 🎯 🖉 🗟 🚫 🔵 ♦ ♦ ♦ 🖉 🗊

Associated graph 2.xbl *

<u>∿ </u>≡)

Associa...

4

- 6 ×

🛂 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Studies\Cannibalization\Associated graph 2.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

🛂 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Studies\Cannibalization\Associated graph 2.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

□ 🗁 🖬 🎍 X 🖞 🖞 キャル科 アクク 🖬 🗮 🗰 ひ む 🐵 🚅 ● タ ● タ 💽 🛛 🛇 🛛 🖉 🖉 Ø ⑧ ● ● ● 🚺 🛬 三 ク ク タ 🗎 🗮 アクク × 🗃 × 😂 4

BAYESIALAB

In Conclusion...

Webinar Series: Friday at 1 p.m. (Central)

Upcoming Webinars:

- March 30 Good Friday No Webinar
- April 6 t.b.d.
- April 13 t.b.d.

Register here: bayesia.com/events

Support

November 5-7, 2018: Chicago Advanced BayesiaLab Course

What is Ravesial ah? ww.bayesia.com/2018-04-11-intro-course-sydney-nsw? hstc=22 889& hsfp=3344690374

User Forum: bayesia.com/community

BayesiaLab Trial

Try BayesiaLab Today!

- Download Demo Version: <u>www.bayesialab.com/trial-download</u>
- Apply for Unrestricted Evaluation Version: <u>www.bayesialab.com/evaluation</u>

BayesiaLab Courses Around the World in 2018

- April 11–13
 Sydney, Australia
- May 16–18
 Seattle, WA
- June 26–28
 Boston, MA
- July 23–25
 San Francisco, CA

- August 29–31
 London, UK
- September 26–28
 New Delhi, India
- October 29–31
 Chicago, IL
- December 4–6
 New York, NY

Learn More & Register: bayesia.com/events

Introductory BayesiaLab Course in San Francisco, California July 23–25, 2018

.

NW Longitude

5/2 1

6th Annual BayesiaLab Conference in Chicago November 1–2, 2018

Thank You!

stefan.conrady@bayesia.us

BayesianNetwork

linkedin.com/in/stefanconrady

facebook.com/bayesia