
Marketing Mix Optimization
Causal Inference in Marketing Science 12:47:30

The current time is:
13:00:00

The webinar will start at:

Central Daylight Time, UTC-5
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Stefan Conrady
stefan.conrady@bayesia.us
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A desktop software for:

• encoding

• learning

• editing

• performing inference

• analyzing

• simulating

• optimizing

with Bayesian networks.



4

1. Motivation & Background

• Introductory Example:

The Generic 2000 Commercial

• Simpson’s Paradox & Causality

2. Marketing Mix Modeling Workflow

• Causal Assumptions?

• Disjunctive Cause Criterion

• Machine-Learning with BayesiaLab

• Causal Inference & Optimization

Today’s Program

stefan.conrady@bayesia.us

40 min.

20 min.
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Webinar Slides, Data, and Recording Available

stefan.conrady@bayesia.us



6

A Practical Introduction for Researchers

• Free download:

www.bayesia.com/book

• Hardcopy available on Amazon:

http://amzn.com/0996533303

Bayesian Networks & BayesiaLab

BayesiaLab.com
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Introductory Example

Generic
2000
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• The Generic Car Company 

runs a commercial at the 

Super Bowl for its new 

model, the Generic 2000.
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• The Generic Car Company 

runs a commercial at the 

Super Bowl for its new 

model, the Generic 2000.
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Ad Exposure Gender Test Drive Purchase
0 1 0 0
0 0 1 1
0 1 0 0
0 0 0 0
1 1 0 1
1 1 0 0
1 0 1 1
0 1 1 0
0 1 1 1
0 1 1 0

BayesiaLab.com

Telephone Survey

• Afterwards, Generic conducts a 

telephone survey of 1,000 car 

shoppers to understand the 

effect of the Super Bowl 

commercial on shopping and 

purchase behavior.

Introductory Example

Observational Data 
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Analyzing the survey with a cross-tab…

Introductory Example

BayesiaLab.com

-15%

Ad Exposure Purchase
No 60%
Yes 45%

Ad Exposure Gender Test Drive Purchase
0 1 0 0
0 0 1 1
0 1 0 0
0 0 0 0
1 1 0 1
1 1 0 0
1 0 1 1
0 1 1 0
h h h h

0 1 1 0
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However, grouping the survey data by Gender reveals:

Introductory Example

BayesiaLab.com

Gender Ad Exposure Purchase
No 30%
Yes 35%
No 70%
Yes 75%

Male

Female

Ad Exposure Gender Test Drive Purchase
0 1 0 0
0 0 1 1
0 1 0 0
0 0 0 0
1 1 0 1
1 1 0 0
1 0 1 1
0 1 1 0
h h h h

0 1 1 0

+5%
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How is this possible?

Introductory Example

BayesiaLab.com

+5%

Gender Ad Exposure Purchase
No 30%
Yes 35%
No 70%
Yes 75%

Male

Female

-15%

Ad Exposure Purchase
No 60%
Yes 45%

Simpson’s paradox is a phenomenon in probability and statistics, in which an 
effect appears in subgroups of data but disappears or reverses when these groups 
are combined.
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Grouping the data by Test Drive shows:

Introductory Example

BayesiaLab.com

-10%

-40%

Test Drive Ad Exposure Purchase
No 60%
Yes 50%
No 60%
Yes 30%

No

Yes

Ad Exposure Gender Test Drive Purchase
0 1 0 0
0 0 1 1
0 1 0 0
0 0 0 0
1 1 0 1
1 1 0 0
1 0 1 1
0 1 1 0
h h h h

0 1 1 0
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Finally, grouping the data by Gender and Test Drive reveals:

Introductory Example

BayesiaLab.com

+10%

-10%

Test Drive Gender Ad Exposure Purchase
No 30%
Yes 40%
No 70%
Yes 80%
No 30%
Yes 20%
No 70%
Yes 60%

Male

Female

Male

Female

No

Yes

Ad Exposure Gender Test Drive Purchase
0 1 0 0
0 0 1 1
0 1 0 0
0 0 0 0
1 1 0 1
1 1 0 0
1 0 1 1
0 1 1 0
h h h h

0 1 1 0
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Test Drive Ad Exposure Purchase
No 60%
Yes 50%
No 60%
Yes 30%

No

Yes

Ad Exposure Purchase
No 60%
Yes 45%

Gender Ad Exposure Purchase
No 30%
Yes 35%
No 70%
Yes 75%

Male

Female

Test Drive Gender Ad Exposure Purchase
No 30%
Yes 40%
No 70%
Yes 80%
No 30%
Yes 20%
No 70%
Yes 60%

Male

Female

Male

Female

No

Yes

So, what’s the advertising effect?

BayesiaLab.com

െ0.15
൅0.05ൎ 0

െ0.2
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Did this commercial have a positive or negative effect on purchase?

Your Opinion?
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Introductory Example

݁ݏ݄ܽܿݎݑܲ ൌ െ0.15 · ݁ݎݑݏ݋݌ݔܧ	݀ܣ ൅ 0.6	 ܴଶ ൌ ݁ݏ݄ܽܿݎݑ0.02ܲ ൌ 0.05 · ݁ݎݑݏ݋݌ݔܧ	݀ܣ ൅ 0.4 · ݎ݁݀݊݁ܩ ൅ 0.3	 ܴଶ ൌ ݁ݏ݄ܽܿݎݑ0.14ܲ ൌ െ0.2 · ݁ݎݑݏ݋݌ݔܧ	݀ܣ െ 0.1 · ݁ݒ݅ݎܦ	ݐݏ݁ܶ ൅ 0.67	 ܴଶ ൌ ݁ݏ݄ܽܿݎݑ0.03ܲ ൌ 0.001 · ݁ݎݑݏ݋݌ݔܧ	݀ܣ ൅ 0.4 · ݎ݁݀݊݁ܩ െ 0.1 · ݁ݒ݅ݎܦ	ݐݏ݁ܶ ൅ 0.37	ሺܴଶൌ	0.15ሻ

െ0.15൅0.05
ൎ 0െ0.2

y=f(x)
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Observational vs. Causal Inference

BayesiaLab.com

y=f(x)
ambiguous

Observational Inference (Prediction)

y=f(see(x))
“given that I see”

Causal Inference (Intervention)

y=f(do(x))
“given that I do”
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Map of Analytic Modeling & Reasoning

BayesiaLab.com

y=f(see(x))
“given that I see”

y=f(do(x))
“given that I do”

Was it good to “do” 
this commercial?
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Test Drive Ad Exposure Purchase
No 60%
Yes 50%
No 60%
Yes 30%

No

Yes

Ad Exposure Purchase
No 60%
Yes 45%

Gender Ad Exposure Purchase
No 30%
Yes 35%
No 70%
Yes 75%

Male

Female

Test Drive Gender Ad Exposure Purchase
No 30%
Yes 40%
No 70%
Yes 80%
No 30%
Yes 20%
No 70%
Yes 60%

Male

Female

Male

Female

No

Yes

So, what’s the advertising effect?

BayesiaLab.com

െ0.15
൅0.05ൎ 0

െ0.2

“given that I see” “given that I see”

“given that I see”

“given that I see”
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Predictive Model:
Observational Inference

y=f(see(x))

Causal Model:
Causal Inference

y=f(do(x))
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Predictive Model:
Observational Inference

y=f(see(x))

Causal Model:
Causal Inference

y=f(do(x))
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Map of Analytic Modeling & Reasoning

BayesiaLab.com
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Develop Theory

Introductory Example

BayesiaLab.com

What’s the story here?
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Our Theory!

Introductory Example

BayesiaLab.com

That’s the story! Now 
we have the qualitative 

part of a causal 
Bayesian network.
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“Parameters”

• We can estimate the 

quantitative part of the 

network from the survey 

data.

• As a result, we have a 

Bayesian network, 

which we can use for 

inference.

Introductory Example

BayesiaLab.com

Female Male
50.000 50.000

Gender

Female
Male

0 1
75.000 25.000
25.000 75.000

Gender Ad Exposure

Female
0

Female 1

Male
0

Male 1

0 1
25.000 75.000
75.000 25.000
25.000 75.000
75.000 25.000

Gender Test Drive Ad Exposure

Female
0 0

Female
0 1Female
1 0

Female
1 1

Male
0 0

Male
0 1Male
1 0Male
1

1

0 1
30.000 70.000
20.000 80.000
30.000 70.000
40.000 60.000
70.000 30.000
60.000 40.000
70.000 30.000
80.000 20.000
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Our “Model of the World”

• How can we obtain the 

effect of Ad Exposure?

• With this causal Bayesian 

network, we can simulate an 

intervention to estimate the 

causal effect.

Introductory Example

BayesiaLab.com
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Causal Inference: Simulating an Intervention

Introductory Example

BayesiaLab.com
Causal Model Intervention Model

“Graph Surgery”
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Causal Inference: Simulating an Intervention

Introductory Example

BayesiaLab.com
Causal Model Intervention Model

Gender

50.00% Female
50.00% Male

Fix Probabilities with 
Likelihood Matching
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Intervention Node
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Intervention
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Intervention

Effect
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Test Drive Ad Exposure Purchase
No 60%
Yes 50%
No 60%
Yes 30%

No

Yes

Ad Exposure Purchase
No 60%
Yes 45%

Gender Ad Exposure Purchase
No 30%
Yes 35%
No 70%
Yes 75%

Male

Female

Test Drive Gender Ad Exposure Purchase
No 30%
Yes 40%
No 70%
Yes 80%
No 30%
Yes 20%
No 70%
Yes 60%

Male

Female

Male

Female

No

Yes

So, what’s the advertising effect?

BayesiaLab.com

െ0.15
൅0.05ൎ 0

െ0.2
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Our Theory!

Introductory Example

BayesiaLab.com

“Treatment”
“Confounder”

݁ݏ݄ܽܿݎݑܲ ൌ 0.05 · ݁ݎݑݏ݋݌ݔܧ	݀ܣ ൅ 0.4 · ݎ݁݀݊݁ܩ ൅ 0.3

Adding Gender to 
the regression 
controls for it.
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ACME, the country’s largest Generic dealer.

Marketing Mix Modeling
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I know I waste half of my advertising dollars; I just wish I knew which half.
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Objective

• Maximize sales within a given marketing budget.

Historical Sales & Media Data

Marketing Mix Optimization

• Quarter

• Month

• Weekday

• End-of-Month Indicator

• TV Advertising

• Direct Marketing

• Print Advertising

• Internet Advertising

• Incentives

• Sales

• Co-Op Promotions

• Competitive Incentives

• Web Traffic

• Showroom Traffic

• Test Drives

ACME GENERIC
AUTO CENTER
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Predictive Model:
Observational Inference

y=f(see(x))

Causal Model:
Causal Inference

y=f(do(x))Causal Network



44BayesiaLab.com

Causal Assumptions?

• Recall: Causal inference 

requires causal assumptions, 

e.g., a causal networks!

• But, given the number of 

variables, there are 2.38×1041

possible causal network graphs!

• Causal directions are not always 

obvious.

Marketing Mix Optimization

?
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Predictive Model:
Observational Inference

y=f(see(x))

Causal Model:
Causal Inference

y=f(do(x))Causal Network
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We need a different
kind of theory

Now What?
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Disjunctive Cause Criterion
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VanderWeele and Shpitser (2011)

• “We propose that control be made for any [pre-treatment] 

covariate that is either a cause of treatment or of the outcome
or both.”

Disjunctive Cause Criterion

Implementation in BayesiaLab:
Likelihood Matching on Confounders in 
Direct Effects Analysis
 Causal Effect, i.e., the Advertising Effect

IMPORTANT ASSUMPTION:

NO UNOBSERVED CONFOUNDERS

Advertisement

Sales

Confounder
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Predictive Model:
Observational Inference

y=f(see(x))

Causal Model:
Causal Inference

y=f(do(x))Confounder Selection

New Theory!
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Proposed Workflow

• Import historical sales and marketing data.

• Machine-learn a predictive model with BayesiaLab.

• Determine Confounders vs. Non-Confounders, using the 
Disjunctive Cause Criterion.

• Estimate and evaluate Direct Effects response curves.

• Introduce Function Node and assign media costs.

• Perform Genetic Target Optimization.

• Apply Network Temporalization.

• Add Constraint Nodes between t and t-1 marketing variables.

• Perform Genetic Target Optimization on dynamic network.

Marketing Mix Optimization All Data is Synthetic 
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Data Import Wizard
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Variable Type Definition
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Missing Values Processing
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Discretization
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Unconnected Network
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Supervised Learning Using 
the Augmented Naïve Bayes 

Algorithm
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Designating Non-Confounders
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Designating Not Observable Nodes
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Confounders

Confounders
(“Not Observable”)

Non-Confounders
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Target Direct 
Effects Analysis
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Target Direct Effects Analysis

Response Curves
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Defining Media Costs

Excel-style formula
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Target
Optimization
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Target
Optimization
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Optimization Results



68

Network Temporalization
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Network Temporalization
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Network Temporalization
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Target Direct Effects Analysis
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Adding Constraints
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Target
Optimization
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Target
Optimization
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Optimization Results
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VR

In Conclusion…
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Upcoming Webinars:

• April 13 Analyzing Capital Flows of Exchange-Traded Funds

• April 20 GIS Mapping with BayesiaLab

Register here: bayesia.com/events

Webinar Series: Friday at 1 p.m. (Central)
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User Forum: bayesia.com/community
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Try BayesiaLab Today!

• Download Demo Version:

www.bayesialab.com/trial-download

• Apply for Unrestricted Evaluation Version:

www.bayesialab.com/evaluation

BayesiaLab Trial

BayesiaLab.com
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• April 11–13

Sydney, Australia

• May 16–18

Seattle, WA

• June 26–28

Boston, MA

• July 23–25

San Francisco, CA

• August 29–31

London, UK

• September 26–28

New Delhi, India

• October 29–31

Chicago, IL

• December 4–6

New York, NY

BayesiaLab Courses Around the World in 2018

Learn More & Register: bayesia.com/events

stefan.conrady@bayesia.us
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Chicago

6th Annual BayesiaLab Conference in Chicago
November 1–2, 2018
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Thank You!

BayesiaLab.com

stefan.conrady@bayesia.us

linkedin.com/in/stefanconrady facebook.com/bayesia

BayesianNetwork


