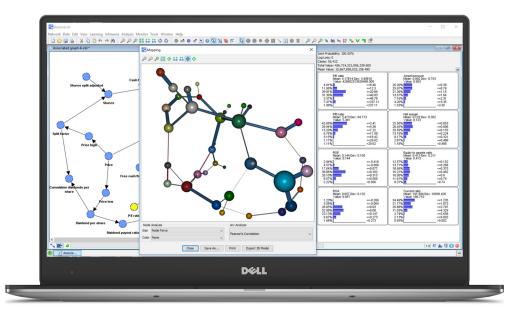


Marketing Mix Optimization Causal Inference in Marketing Science

(CH

13:00:00 The current time is: 12:47:30 Central Daylight Time, UTC-5



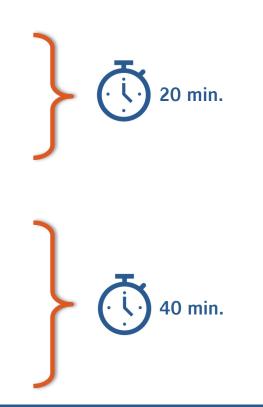
Stefan Conrady

stefan.conrady@bayesia.us

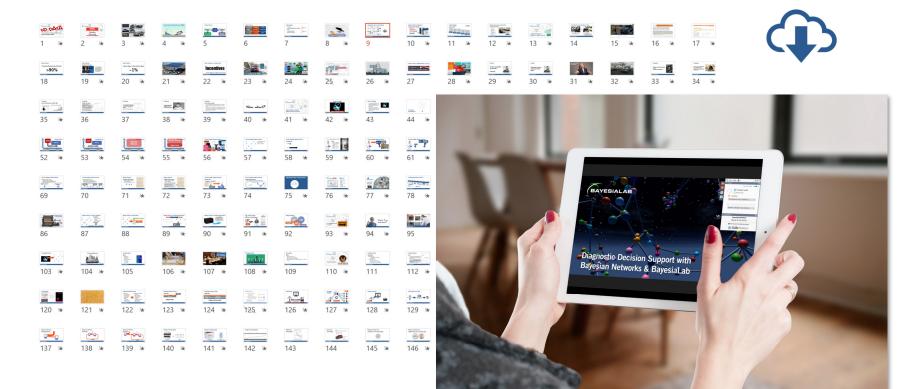
A desktop software for:

- encoding
- learning
- editing
- performing inference
- analyzing
- simulating
- optimizing

with Bayesian networks.


Today's Program

1. Motivation & Background


- Introductory Example: The Generic 2000 Commercial
- Simpson's Paradox & Causality

2. Marketing Mix Modeling Workflow

- Causal Assumptions?
- Disjunctive Cause Criterion
- Machine-Learning with BayesiaLab
- Causal Inference & Optimization

Webinar Slides, Data, and Recording Available

stefan.conrady@bayesia.us

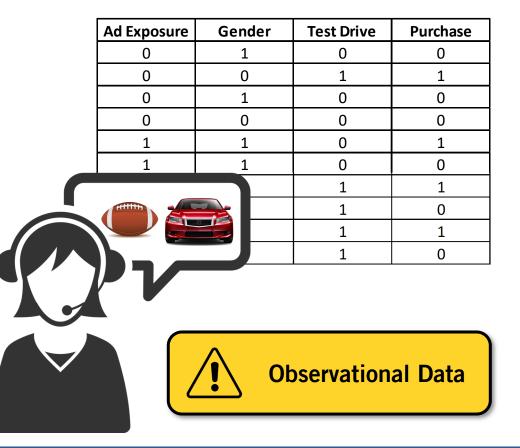
Bayesian Networks & BayesiaLab

A Practical Introduction for Researchers

• Free download:

www.bayesia.com/book

 Hardcopy available on Amazon: <u>http://amzn.com/0996533303</u>


 The Generic Car Company runs a commercial at the Super Bowl for its new model, the Generic 2000. The Generic Car Company runs a commercial at the Super Bowl for its new model, the Generic 2000.

GENERI

2000

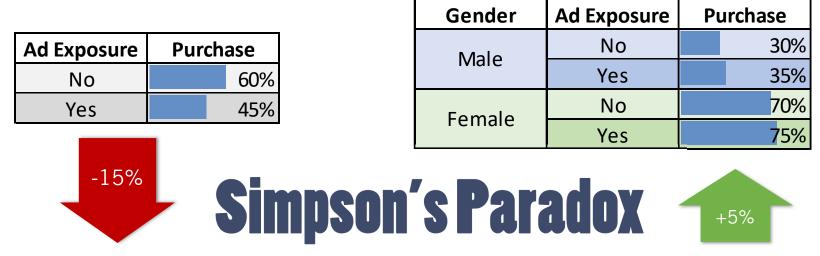
Telephone Survey

 Afterwards, Generic conducts a telephone survey of 1,000 car shoppers to understand the effect of the Super Bowl commercial on shopping and purchase behavior.

Analyzing the survey with a cross-tab...

Ad Exposure	Gender	Test Drive	Purchase
0	1	0	0
0	0	1	1
0	1	0	0
0	0	0	0
1	1	0	1
1	1	0	0
1	0	1	1
0	1	1	0
:	•	•	•
0	1	1	0

Ad Exposure	Purchase
No	60%
Yes	45%


However, grouping the survey data by Gender reveals:

Ad Exposure	Gender	Test Drive	Purchase
0	1	0	0
0	0	1	1
0	1	0	0
0	0	0	0
1	1	0	1
1	1	0	0
1	0	1	1
0	1	1	0
:	•	•	•
0	1	1	0

	Gender	Ad Exposure	Purchase
	Male	No	30%
	Iviale	Yes	35%
	Female	No	<mark>70%</mark>
		Yes	7 <mark>5%</mark>

How is this possible?

Simpson's paradox is a phenomenon in probability and statistics, in which an effect appears in subgroups of data but disappears or reverses when these groups are combined.

Grouping the data by Test Drive shows:

Ad Exposure	Gender	Test Drive	Purchase
0	1	0	0
0	0	1	1
0	1	0	0
0	0	0	0
1	1	0	1
1	1	0	0
1	0	1	1
0	1	1	0
	•	•	•
0	1	1	0

Test Drive	Ad Exposure	Purchase	-10%
No	No	60%	10/0
NO	Yes	50%	
Yes	No	60%	
res	Yes	30%	-40%

Finally, grouping the data by Gender and Test Drive reveals:

Ad Exposure	Gender	Test Drive	Purchase
0	1	0	0
0	0	1	1
0	1	0	0
0	0	0	0
1	1	0	1
1	1	0	0
1	0	1	1
0	1	1	0
	•	:	:
0	1	1	0

	Test Drive	Gender	Ad Exposure	Purchase		
		Male	No	30%		
	No	Iviale	Yes	40%	+10%	
		Female	No	<mark>70%</mark>	T1070	
			Yes	8 <mark>0%</mark>		
	Yes	Male	No	30%		
			Yes	20%	-10%	
		E	No	<mark>70%</mark>		
		Female	Yes	60%		

So, what's the advertising effect?

Test Drive	Gender	Ad Exposure	Purchase
	Male	No	30%
No	Iviale	Yes	40%
NO	Female	No	<mark>70%</mark>
		Yes	8 <mark>0%</mark>
	Male	No	30%
Yes	Iviale	Yes	20%
res	Female	No	70%
	remale	Yes	60%

Test Drive	Ad Exposure	Purch	
No	No	60%	
No	-02	50%	
Yes	NO	60%	
res	Yes	30%	

Gender	Ad Exposure Pu		urchase	
Male	No		30%	
Iviale	-+0.0)5	35%	
Female	No		70%	
rentale	Yes		75%	

Your Opinion?

Did this commercial have a positive or negative effect on purchase?

RUSSELL GLASS · SEAN CALLAHAN

THE

BUSINESS

DATA-DRIVEN

with

DECISIONS

MAKING

Data Driven

O'REILL

Creating a Data Culture

5 Steps To Powering Data Driven Decision Makir

Data-Driven

DATA - DRIVEN MARKETING

Decision-Making

increasing sales with

loginradius

Data driven decisions

sions FORTUNE 500

GET #DATADRIVEN

THE DATA-DRIVEN

Data-Driven Marketing DataDriven

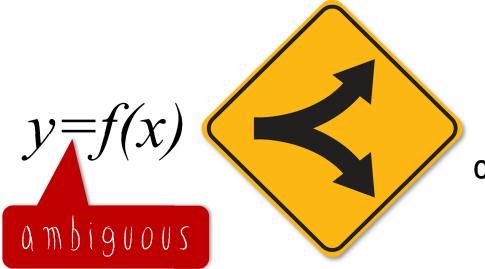
DATA-DRIVEN decisions in a

Purchase =
$$-0.15 \cdot Ad \ Exposure + 0.6 \ (R^2 = 0.02)$$
 -0.15 Purchase = $0.05 \cdot Ad \ Exposure + 0.4 \cdot Gender + 0.3 \ (R^2 = 0.14)$ $+0.05$ Purchase = $-0.2 \cdot Ad \ Exposure - 0.1 \cdot Test \ Drive + 0.67 \ (R^2 = 0.03)$ -0.2 Purchase = $0.001 \cdot Ad \ Exposure + 0.4 \cdot Gender - 0.1 \cdot Test \ Drive + 0.37 \ (R^2 = 0.15)$ ≈ 0

$$y=f(x)$$

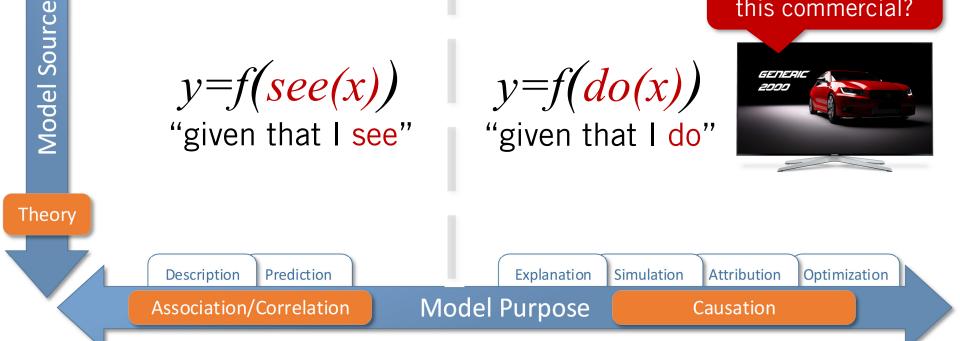
Observational vs. Causal Inference

Observational Inference (Prediction)



"given that I see"

Causal Inference (Intervention)


y=f(do(x))

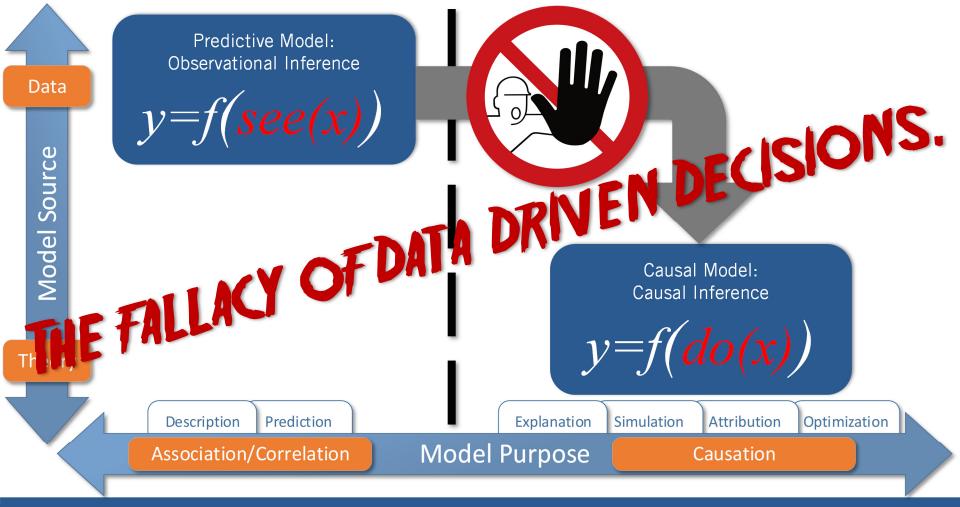
"given that I do"

Map of Analytic Modeling & Reasoning

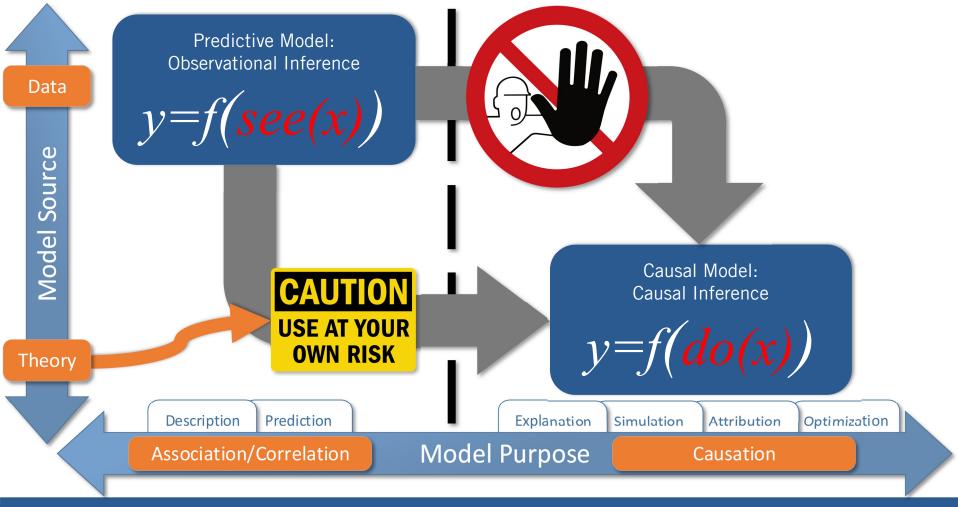
Was it good to "do" this commercial?

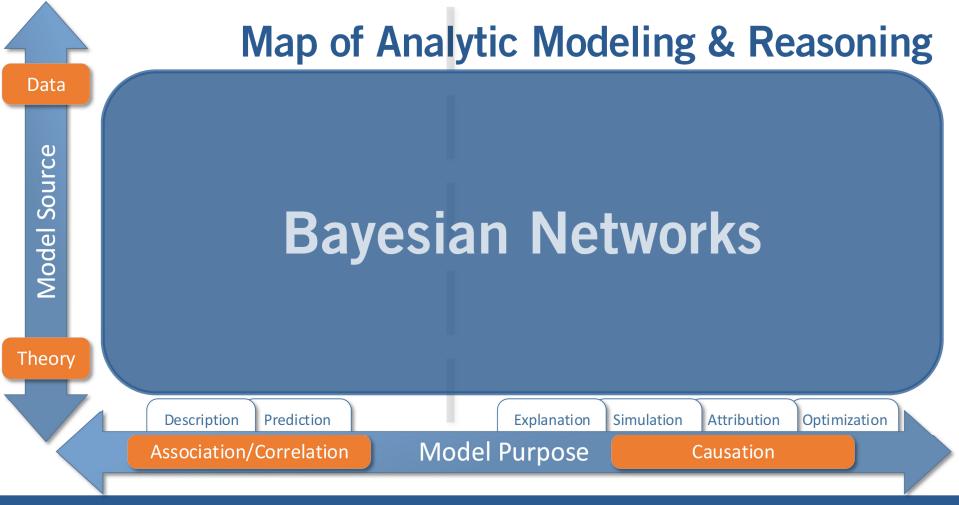
BayesiaLab.com

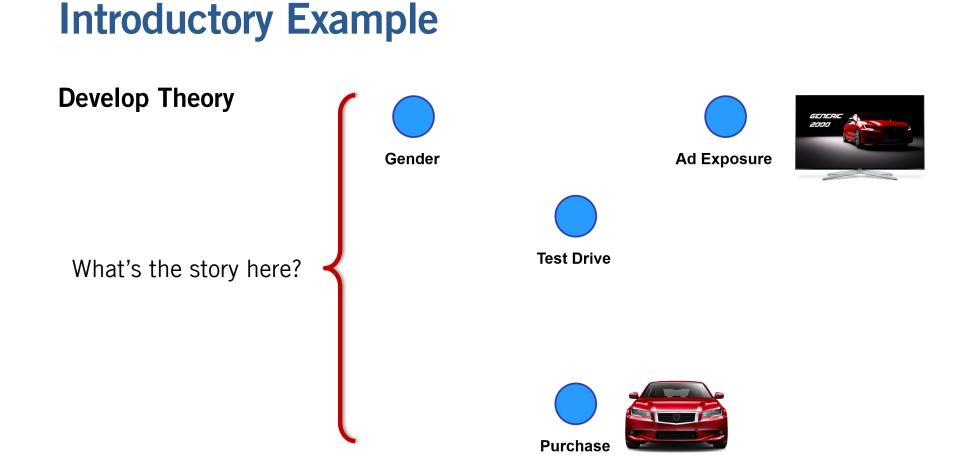
Data


So, what's the a "given that I see" fect? "given that I see"

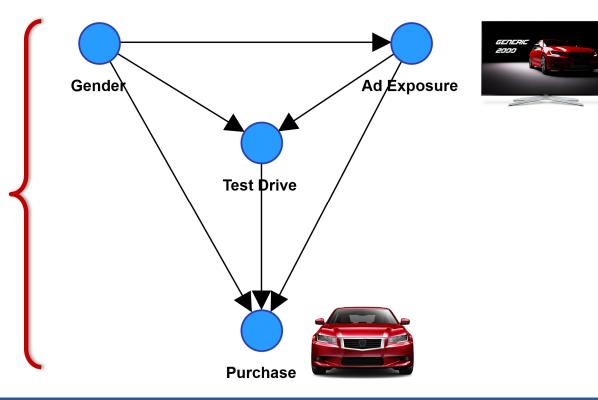
Test Drive	Gender	Ad Exposure	Purchas
	Male	No	۵0%
No	Iviale	Yes	40%
NO	Female \approx	No	70%
		Yes	80%
		No	30%
Voc	Male	Yes	20%
Yes	Fomalo	No	70%
	Female	Yes	60%


"given that I see"				
Test Drive	d Exposure	Purch	1	
No	No		60%	
	-0.2		50%	
Yes	NO		60%	
	Yes		30%	

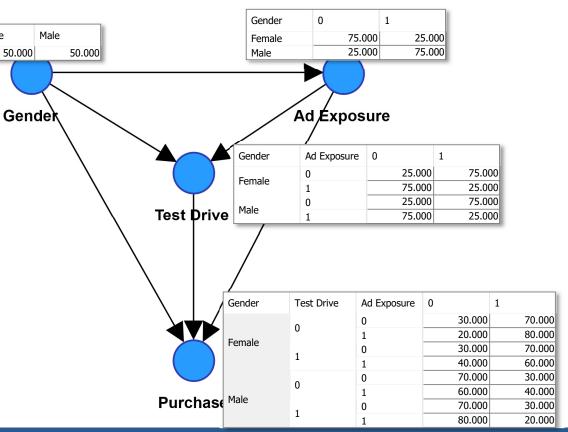

Gender	Ad Expos e	P	Purchase	
Male	No		30%	
Iviare	+0.0)5	35%	
Female	No		70%	
	Yes		75%	



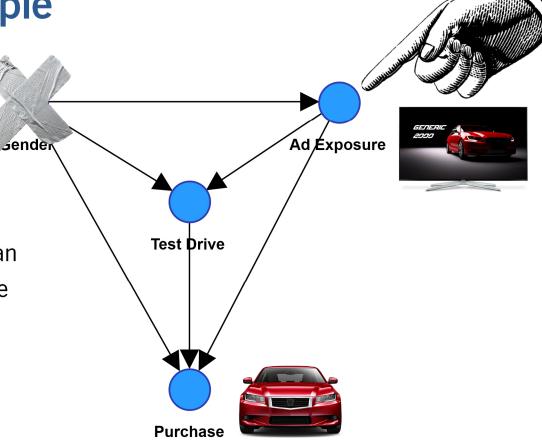
Once upon a time...

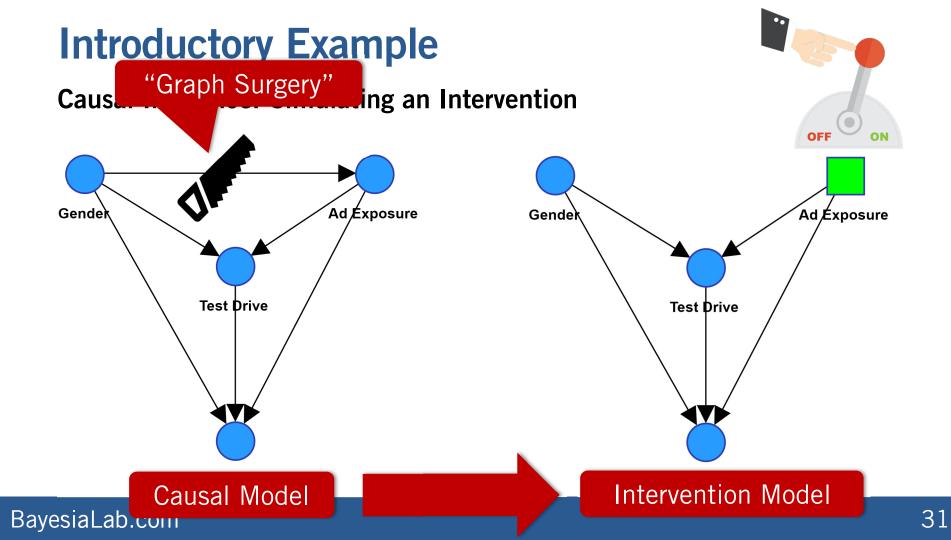


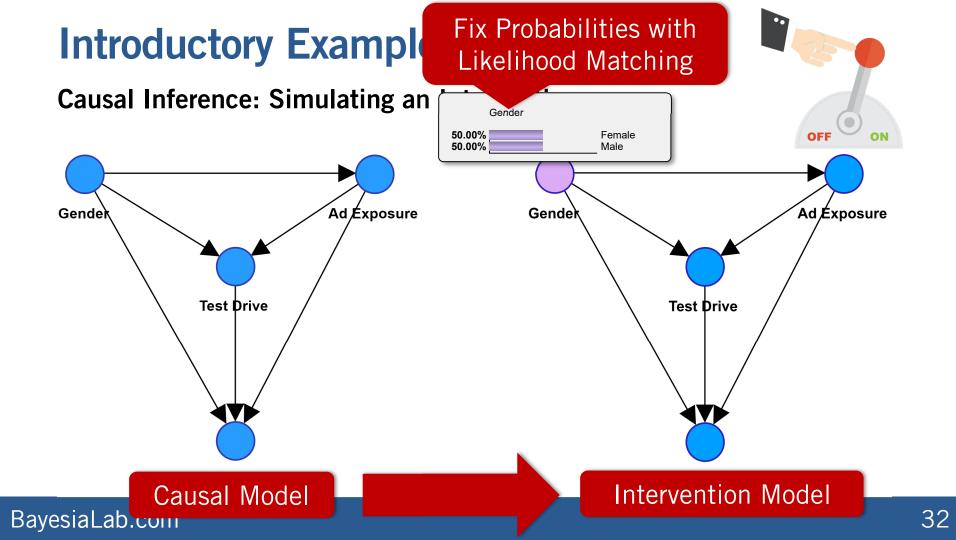
Our Theory!

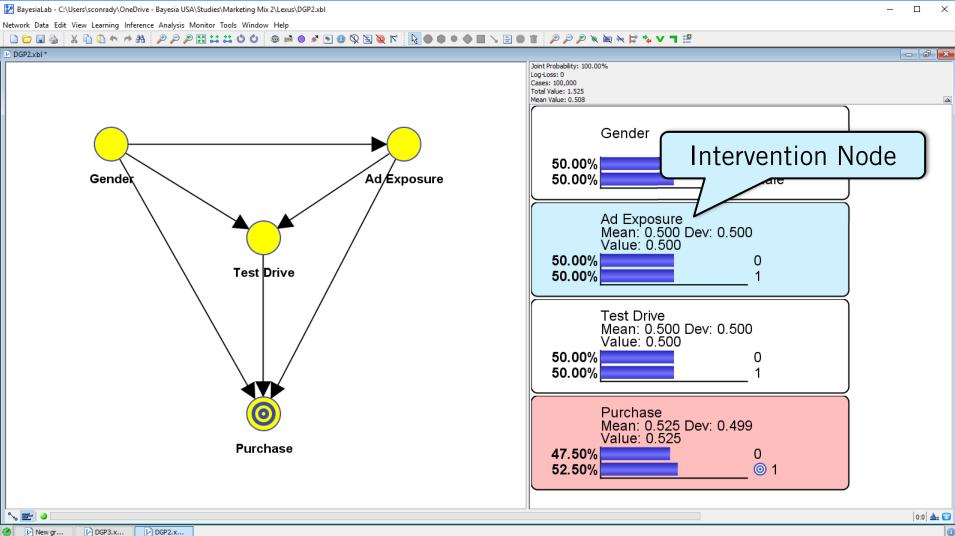

That's the story! Now we have the qualitative part of a causal Bayesian network.

Female

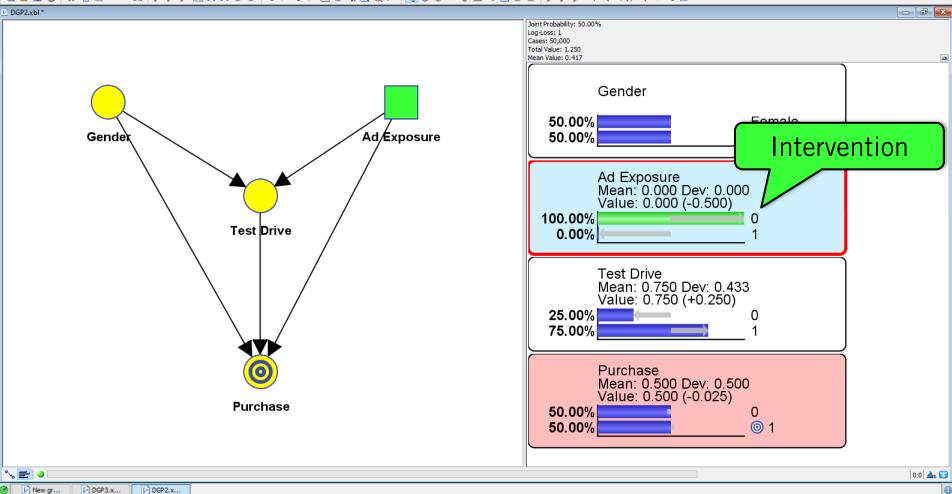

"Parameters"


- We can estimate the quantitative part of the network from the survey data.
- As a result, we have a Bayesian network, which we can use for inference.

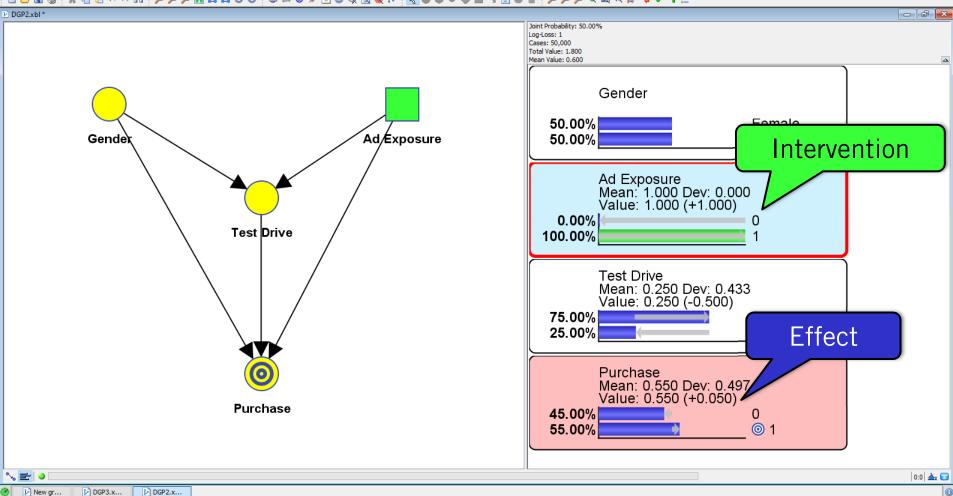



Our "Model of the World"

- How can we obtain the effect of Ad Exposure?
- With this causal Bayesian network, we can simulate an intervention to estimate the causal effect.

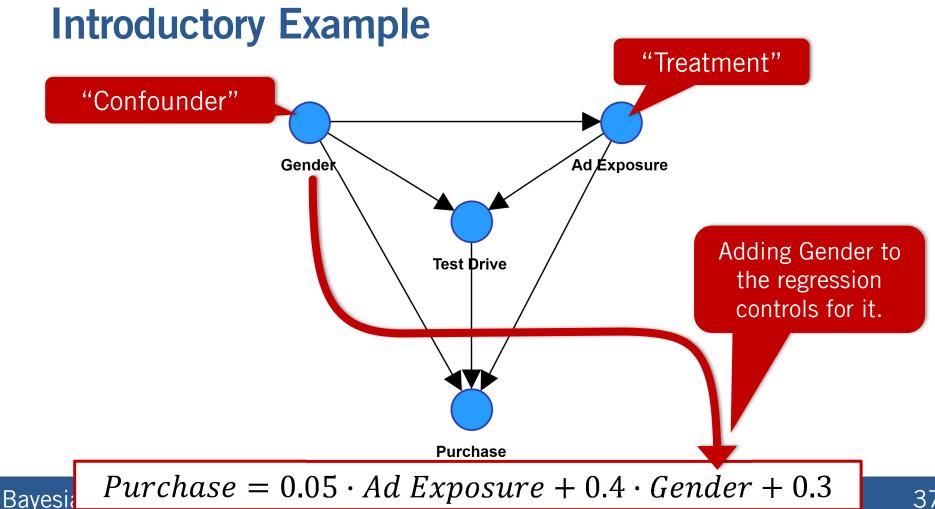


Network Data Edit View Learning Inference Analysis Monitor Tools Window Help



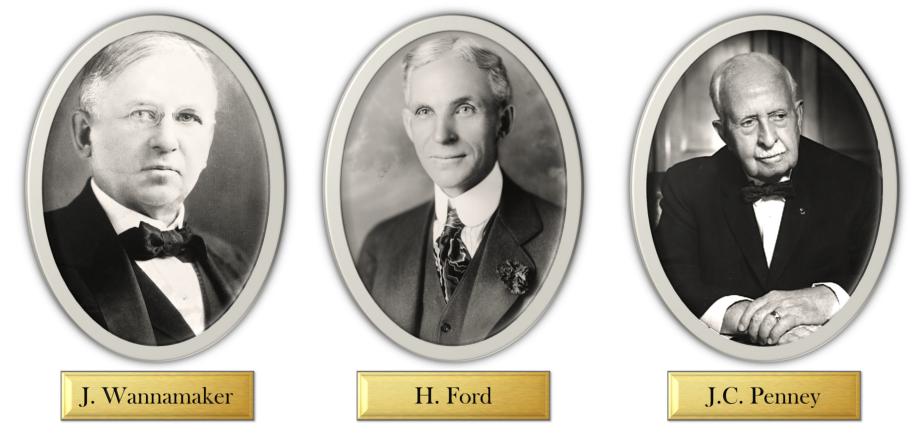
Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

So, what's the advertig


Test Drive	Gender	Ad Exposure	Purchase
No	Male	No	30%
	Iviale	Yes	40%
	Female	No	70%
	~~ <mark>≈ (</mark>	Yes	80%
Yes	Male	No	30%
		Yes	20%
	Female	No	70%
		Yes	60%

Test Drive	Ad Exposure	Purchase	
No	No	60%	
NO	-0.2	50%	
Yes	NO	60%	
	Yes	30%	

Gender	Ad Exposure	Purchase
Male	No	30%
Iviare	+0.0	35%
Female	No	70%
	Yes	7 5%

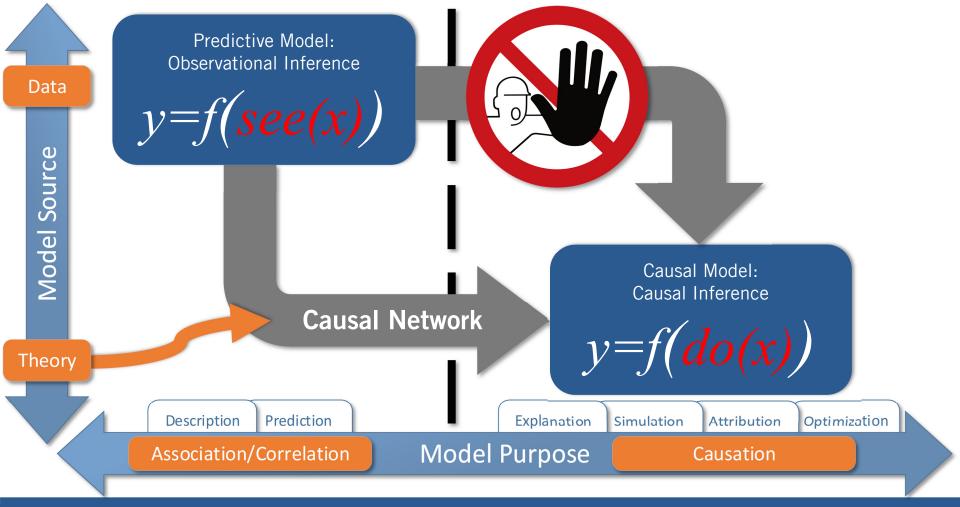

effect?

Ad Expo	sure	Purc	hase
No	_() 15	60%
Yes	C		45%

I know I waste half of my advertising dollars; I just wish I knew which half.

Marketing Mix Optimization

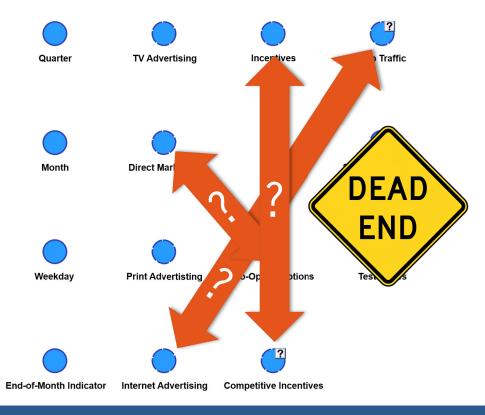
Objective

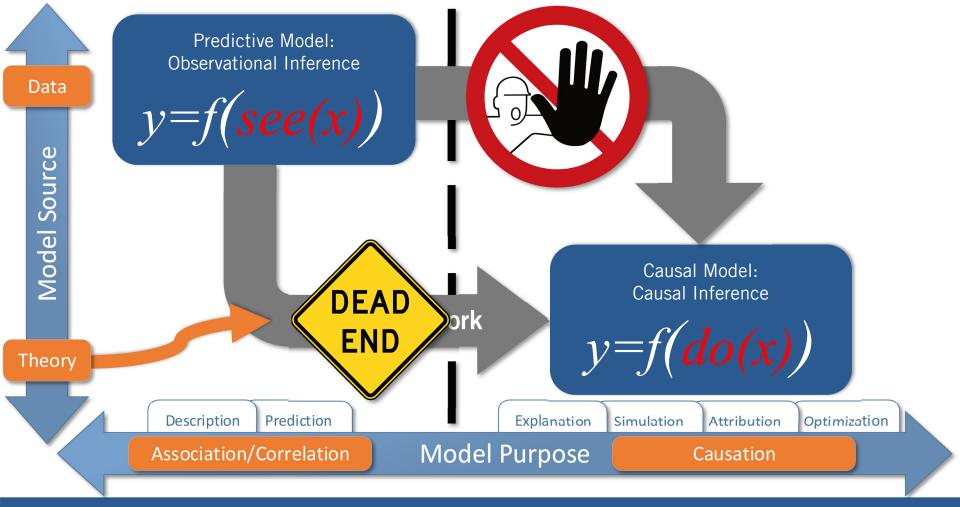

• Maximize sales within a given marketing budget.

Historical Sales & Media Data

- Quarter
- Month
- Weekday
- End-of-Month Indicator
- TV Advertising

- Direct Marketing
- Print Advertising
- Internet Advertising
- Incentives
- Sales


- Co-Op Promotions
- Competitive Incentives
- Web Traffic
- Showroom Traffic
- Test Drives



Marketing Mix Optimization

Causal Assumptions?

- Recall: Causal inference requires causal assumptions, e.g., a causal networks!
- But, given the number of variables, there are 2.38×10⁴¹ possible causal network graphs!
- Causal directions are not always obvious.

We need a different kind of theory

Disjunctive Cause Criterion

NIH Public Access Author Manuscript

Biometrics. Author manuscript; available in PMC 2012 December 1.

Published in final edited form as: *Biometrics.* 2011 December ; 67(4): 1406–1413. doi:10.1111/j.1541-0420.2011.01619.x.

A new criterion for confounder selection

Tyler J. VanderWeele and

Departments of Epidemiology and Biostatistics, Harvard School of Public Health 677 Huntington Avenue, Boston, MA 02115, Phone: 617-432-7855; Fax: 617-4321884

Ilya Shpitser

Department of Epidemiology, Harvard School of Public Health 677 Huntington Avenue, Boston, MA 02115

Tyler J. VanderWeele: tvanderw@hsph.harvard.edu

Abstract

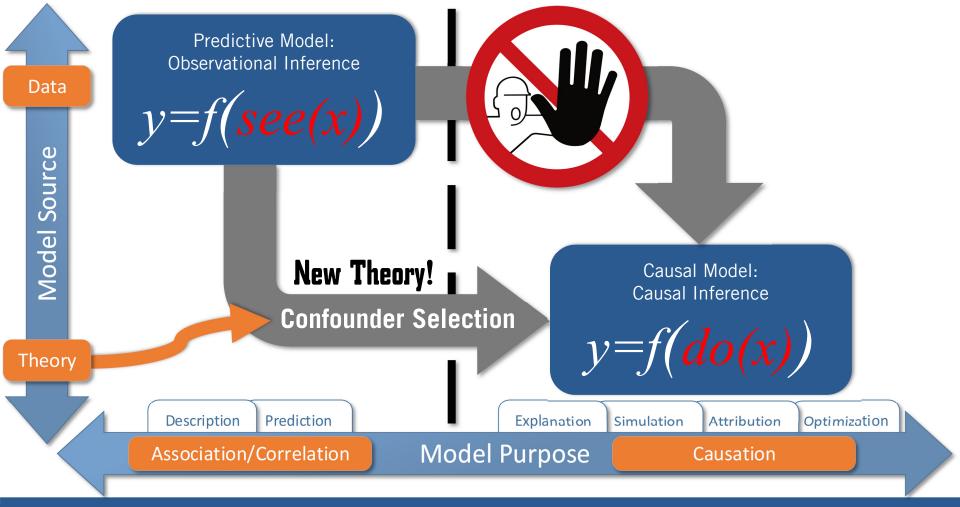
We propose a new criterion for confounder selection when the underlying causal structure is unknown and only limited knowledge is available. We assume all covariates being considered are pretreatment variables and that for each covariate it is known (i) whether the covariate is a cause of treatment, and (ii) whether the covariate is a cause of the outcome. The causal relationships the covariates have with one another is assumed unknown. We propose that control be made for any covariate that is either a cause of treatment or of the outcome or both. We show that irrespective of the actual underlying causal structure, if any subset of the observed covariates suffices to control

NIH-PA Auti

Disjunctive Cause Criterion

VanderWeele and Shpitser (2011)

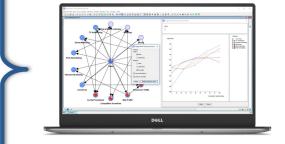
Confounder


 "We propose that control be made for any [pre-treatment]
 covariate that is either a cause of treatment or of the outcome or both."

Advertisement

Implementation in BayesiaLab:
 Likelihood Matching on Confounders in
 Direct Effects Analysis
 → Causal Effect, i.e., the Advertising Effect

IMPORTANT ASSUMPTION: NO UNOBSERVED CONFOUNDERS


Sales

Marketing Mix Optimization

Proposed Workflow

- Import historical sales and marketing data.
- Machine-learn a predictive model with BayesiaLab.
- Determine Confounders vs. Non-Confounders, using the Disjunctive Cause Criterion.
- Estimate and evaluate **Direct Effects** response curves.
- Introduce Function Node and assign media costs.
- Perform Genetic Target Optimization.
- Apply Network Temporalization.
- Add **Constraint Nodes** between t and t-1 marketing variables.
- Perform Genetic Target Optimization on dynamic network.

All Data is Synthetic

🗋 🗁

Separators	Semicolon	Comma				Options Title Line Consider Identical Consecutive separators as a Unique One Consider Different Consecutive Separators as a Unique One				
Missing Value		Add								
NC Sampling	V Define Sample	Remove	N/A V Remove			Double Quote as String Delimiters Single Quote as String Delimiters				
Data						Transpose		1	1	
Quarter 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Month 1 1 1 1 1 1 1 1 1 1 1 1 1	Weekday 2 3 4 5 6 7 1 2 3 4 5 5 6	End-of-Mo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21.2813211 19.2473639 23.0072467 13.7276643 3.16579608 8.58478816 49.0430109 48.0059201	35.6855229 38.5054350 31.5457482 23.6243470 27.6885911 58.0322582	9.96128288 31.8617596 28.4687063 20.6922342 12.8541668 7.51840698 4.15482878 34.7903646	16.6983126 27.1236819 9.00362336 4.36383216 1.79239408 32.0215054 49.6942371	32.7752257 10.3516514 7.80920491 12.5090584 18.5672537 34.4188431 27.9639347 31.6578220 25.7330030	235.48201 212.64031 279.77521 217.12078 103.70346 109.98872 318.55539 355.06115	

Data Import Wizard

🗋 🗁

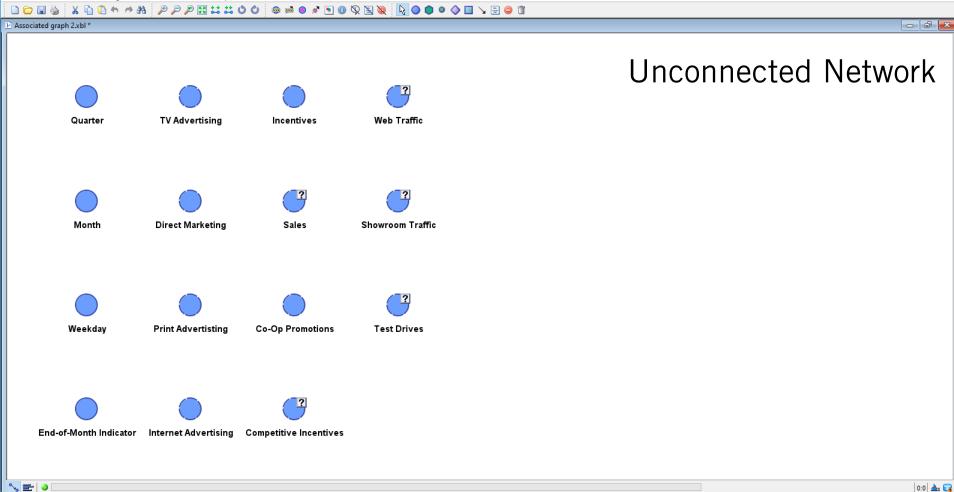
Гуре	Act	tion		Information							
O Not Distri	buted	Columns with Mis	sing Values	Number of Ro	ws 16801	100.00%					
Discrete) Discrete All not Distribute		buted	Not Distribute	d 0	0.00%					
Continuous All Discrete Weight All Continuous			Discrete	4	26.67%						
		ete	Continuous	11	73.33%						
		ious	Others	0	0.00%						
O Learning/	Test			Missing Values	5 6	0.00%					
Row Iden				Filtered Value	s O	0.00%					
Quarter	Month 1	Weekday 2	End-of-Mo				Internet A 14.1863730		Sales		
Quarter	Month	Weekday	End-of-Mo	TV Adverti	Direct Mar	Print Adve	Internet A	Incentives	Sales		
1	1	2	0					25.4659327	225 510222		
1	1	4	0					10.3516514			
1	1	5	ŏ					7.80920491			
1	1	6	0					12.5090584			
1	1	7	0					18.5672537			
1	1	1	0	13.7276643	38.5054350	12.8541668	9.00362336	44.5352183	217.120784		
1	1	2	0	3.16579608	31.5457482	7.51840698	4.36383216	34.4188431	103.703461		
1	1	3	0	8.58478816	23.6243470	4.15482878	1.79239408	27.9639347	109.988720		
1	1	4	0	49.0430109	27.6885911	34.7903646	32.0215054	31.6578220	318.555398		
1	1	5	0	48.0059201	58.0322582	47.3061859	49.6942371	25.7330030	355.061154		
1	1	6	0					42.5981801			
1	1	7	0					48.8700524			
1	1	1	0	29.1636534	54.5759953	17.5206372	12.6097153	36.6784392	287.837859		

Variable Type Definition

🗋 🗁

Missing Value	and Filtering				Information				
Filter	crroccasing				Number of Ro	ws 16801	100.00%		
	OR				Not Distribute	d 0	0.00%		
	AND				Discrete	4	26.67%		
Replace			<u>_</u>			11	73.33%		
	Value		<u> </u>		Others	0	0.00%		
	vaiue Mean/Modal				Missing Values	s 6	0.00%		
	Mean/Modal				Filtered Value		0.00%		
) Infer					Select Values				
	Static Imputation				O OR			Delete Sel	ections
	Dynamic Imputat	tion			AND			Display Sel	
	Structural EM								
\bigcirc	Entropy-Based S	tatic Imputation							
Data Ouarter 🗸)ynamic Imputation Weekday 😎	End-of 💌	TV Adv 🔻	Direct M 🔻	Print Ad 🔻	Interne 🔻	Incentives 🔻	Sales 🛛 🗸
1	1	2	0		46.2795596				
1	1	3	0		50.6651354				
1	1	4 5	0		21.6886298 37.2109908				
	1	6	0		6.69831269				
1									>
1			Select	All Continuous	Select All D	Discrete			
1			Jelecti						

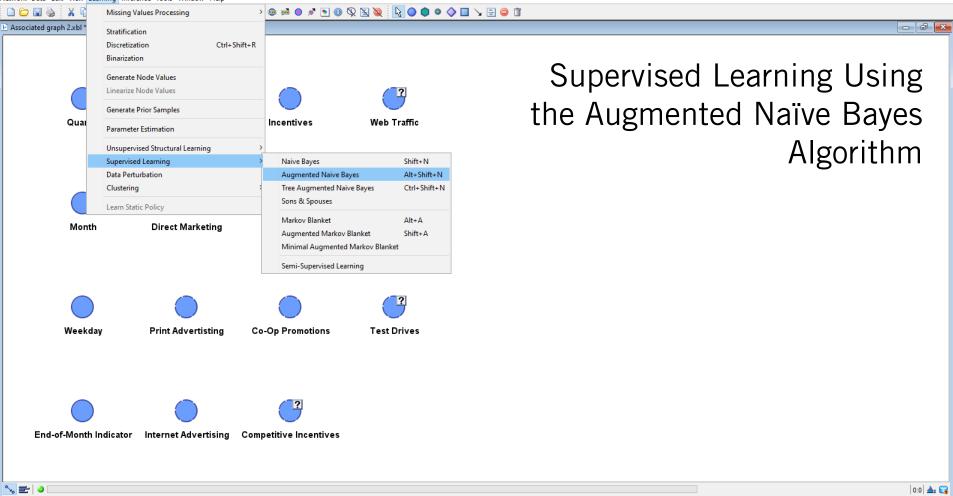
Missing Values Processing


🛂 Data Import \times Discretization and Aggregation Discretization Manual Type \sim 18.14% 0.016 Maximum 0.015-Minimum 0.014 Threshold Value 18.018616 0.013-0.012-Previous Next 0.011* Distribution Function 0.010-0.009-Generate a Discretization 0.008* Transfer the Discretization Thresholds 0.007 0.006-Create a class for each type of discretization 0.005 Load Discretizations 0.004-0.003-20 30 40 60 70 10 50 80 Data Month Weekday End-of-Mo... TV Adverti... Direct Mar... Print Adve... Internet A... Incentives Quarter Sales 1 0 33.3727461... 46.2795596... 18.8143290... 14.1863730... 25.4659327. 3 **39.2201805... 50.6651354... 22.1766038... 17.1100902... 32.7752257... 325.51833** 0 0.58483979... 21.6886298... 9.96128288... 7.79241989... 10.3516514... 99.6351953 4 0 1 0 1 5 21.2813211... 37.2109908... 31.8617596... 47.2109908... 7.80920491... 235.482011 < > Select All Continuous Select All Discrete Finish Cancel Previous

Discretization

🔀 BayesiaLab - Associated graph 2.xbl

Associa...

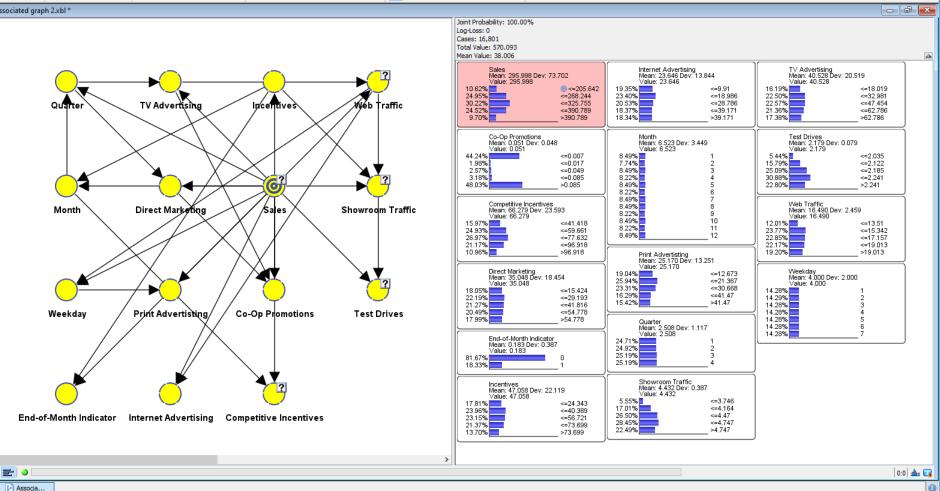

Network Data Edit View Learning Inference Tools Window Help

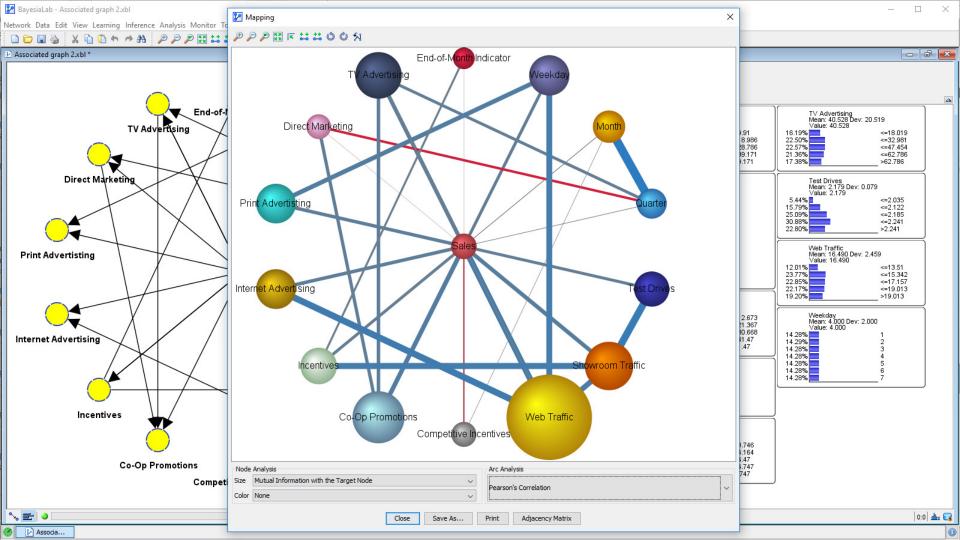
Δ

Associa...

Network Data Edit View Learning Inference Tools Window Help

BayesiaLab - Associated graph 2.xbl

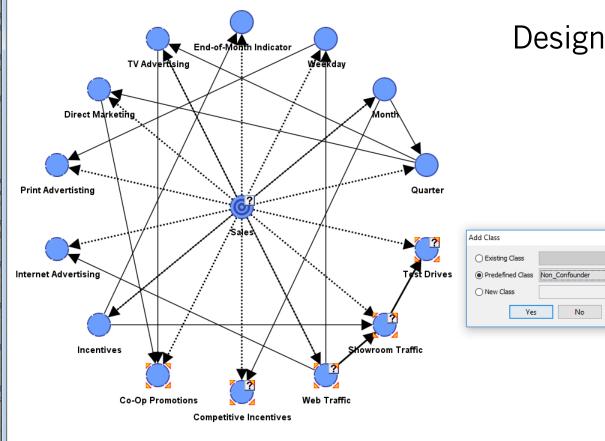

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help



Associated graph 2.xbl *

<

°⊾ ☴ 🧿


🔀 BayesiaLab - Associated graph 2.xbl

Network Data Edit View Learning Inference Tools Window Help

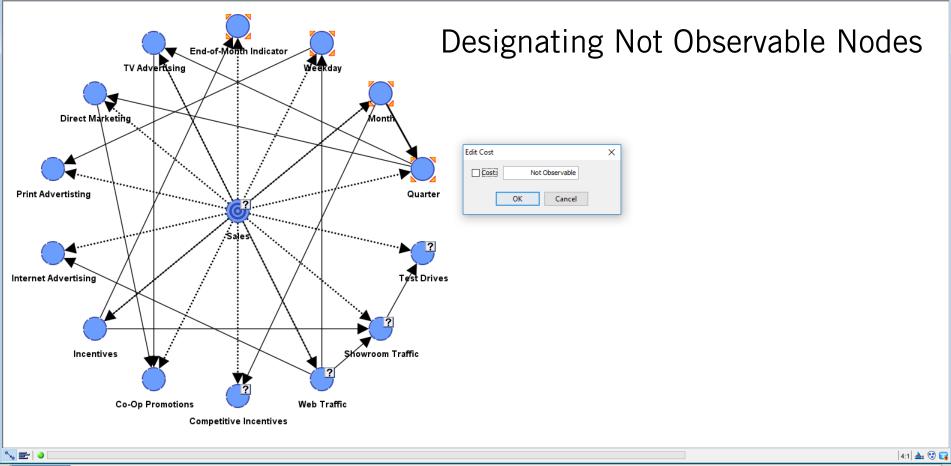
□ □ □ □ ↓ ↓ □ □ ← # # P □ □ ↓ □ ◊ 0 ⊕ # ● P □ ↓ □ ◊ 0 ⊕ # ● P □ ↓ □ ⊕ 0 ↑

Associated graph 2.xbl *

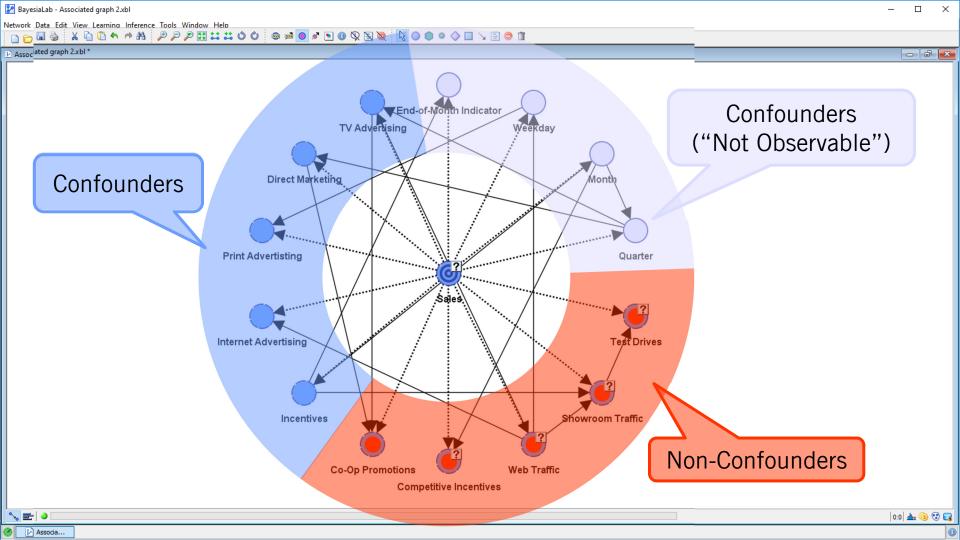
Associa...

Designating Non-Confounders

 \times



- 6 ×



Associated graph 2.xbl *

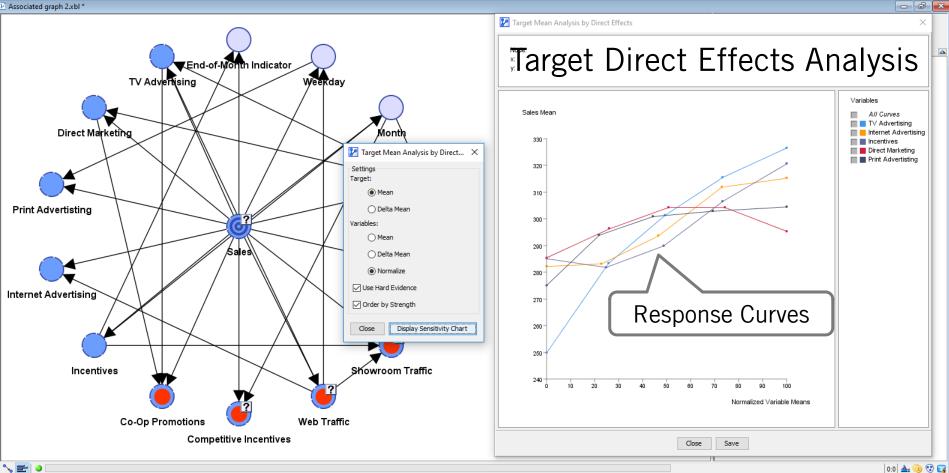
Associa...

- 6 ×

🔀 BayesiaLab - Associated graph 2.xbl

🙆 😥 Associa...

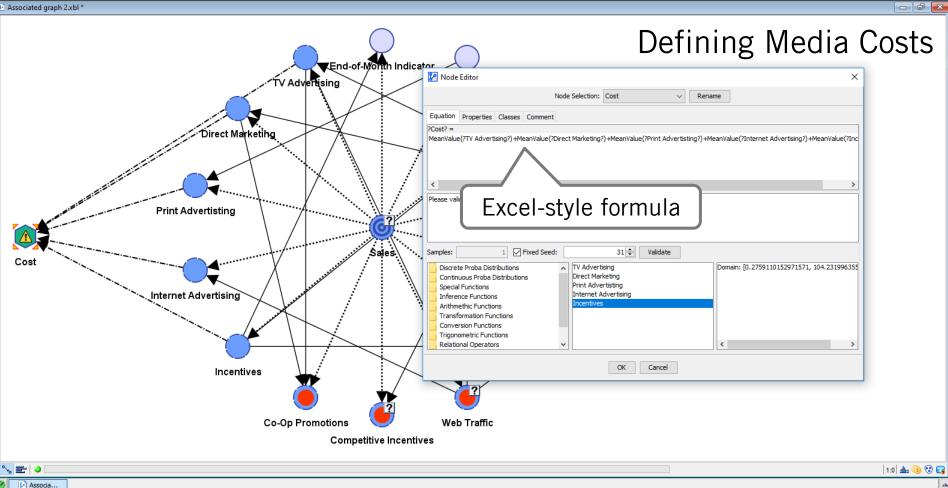
Network Data Edit View Learning Inference Analysis Monitor Tools Window Help 🗋 🗁 🖬 🍓 🤅 X 🔓 🛍 🍖 🏓 🙈 > 🔯 🔽 🛛 🕒 🌒 🖷 🖕 🖃 🖕 📰 🖉 🖉 🖉 🖉 🖉 🗮 💘 😭 🐄 🔛 🗮 😤 Visual Overall Associated graph 2.xbl * Report Target Posterior Probability - 6 **X** Graph Posterior Mean Standard V Joint Probability: 100.00% Network Performance Log-Loss: 0 Interpretation Tree Shift+Q Direct Effects Shift+V Sensitivity Cases: 16,801 Target Optimization Total Value: 570.093 Mutual Information Most Probable Explanation Mean Value: 38,006 Function Optimization Contributions Eng-or-worumndicator Target Direct Weekday TV Advertising **Effects Analysis** Direct Marketing Month Print Advertisting Quarter ? /Sales\\ Test Drives Internet Advertising Incentives Showroom Traffic Web Traffic Co-Op Promotions **Competitive Incentives** 0:0 📥 🕦 🕄 🕞 × 🗾 🧿


PayesiaLab - Associated graph 2.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

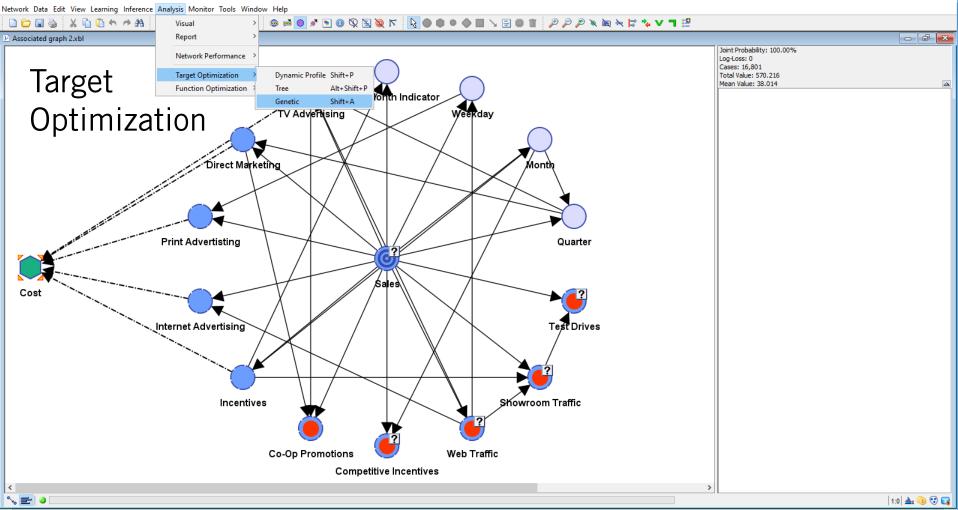
Associated graph 2.xbl *

Associa...



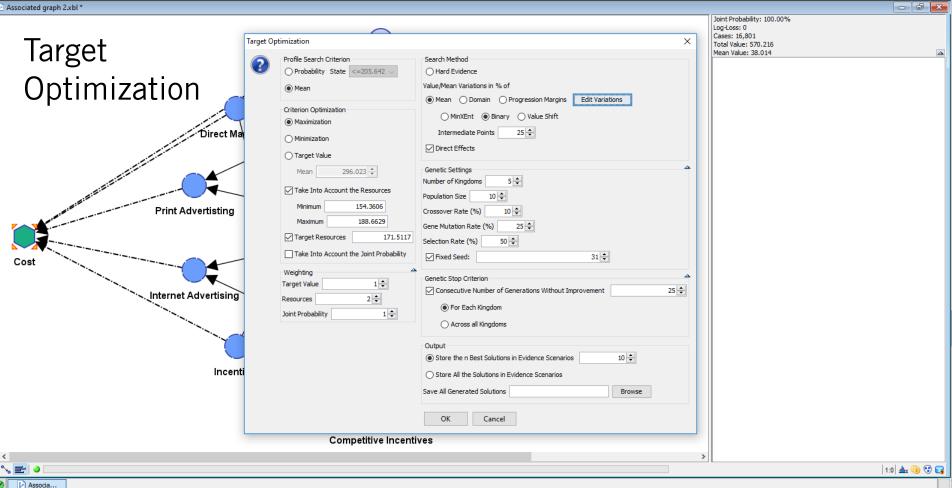
🔀 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Studies\Marketing Mix 2\Lexus\Associated graph 2.xbl

Network Data Edit View Learning Inference Tools Window Help


□ □ □ □ ↓ X □ □ + + A P P P □ ↓ ↓ ○ ○ ⊕ = ○

Associated graph 2.xbl *

🙆 😥 Associa...

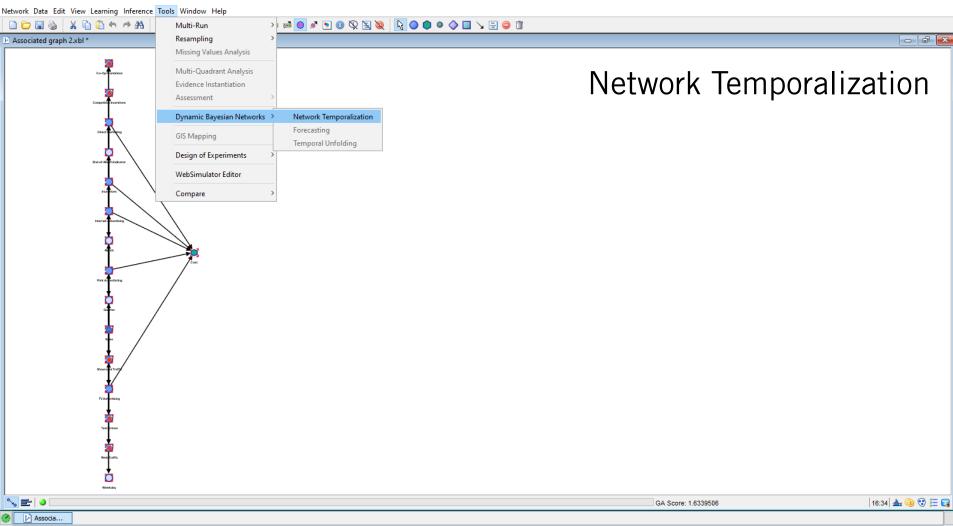


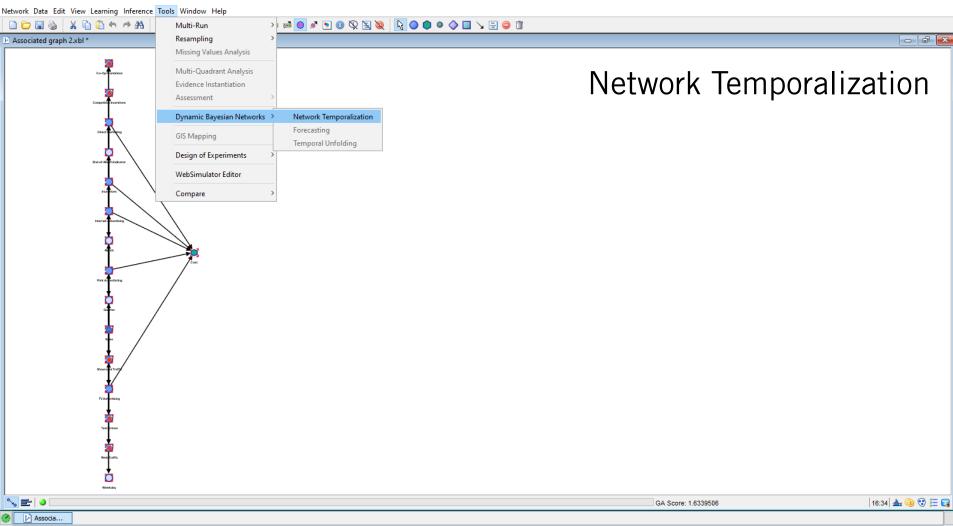
🜠 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Studies\Marketing Mix 2\Lexus\Associated graph 2.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

Associated graph 2.xbl *

😰 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Studies\Marketing Mix 2\Lexus\Associated graph 2.xbl


Network Data Edit View Learning Inference Analysis Monitor Tools Window Help



Associa...

Associated graph 2	2.xbl *									
								Joint Probability: 3.76927E-4%		
🔽 Optimization	Report of Sales (Ass	sociated grap	h 2)			– 🗆 X		Log-Loss: 18.02 Cases: 0.06		
opunization	report of bales (As	sectored grap					~ 	Total Value: 599.986		
Initial State		-			- -			Mean Value: 39.999 Resources: 171.567 (0.055)		
Value/Mean Re	esources)nt	imizat	∙i∩n F	?Doult	c I	1	Sales	TV Advertising	Co-Op Promotions
	171.5117	γρι	IIIIZai		Court	с	a	Mean: 327.544 Dev: 60.594 Value: 327.544 (+31.521)	TV Advertising Mean: 48.318 Dev: 8.439 Value: 48.318 (+7.793)	Mean: 0.075 Dev: 0.041 ∀alue: 0.075 (+0.024)
		•						1.97% © <=205.642 12.06% = <=268.244	0.00% <=18.019 0.00% <=32.981	18.59% <=0.007 2.72% <=0.017
Search Method	I: Value/Mean Varia	ations in % o	f Mean - Fix Probabiliti	es (Binary) - Direct El	fects			32.21% <= 325.755	44.07% <=47.454	3.96%
								41.40% <a> 390.789	55.93% <=62.786 0.00% >62.786	4.12% <=0.085 70.61% >0.085
Not Fixed Node	es									
Node	Non Confo	under Facto	or Not Observable					Quarter Mean: 2.508 Dev: 1.117	Direct Marketing Mean: 39.095 Dev: 6.730	Competitive Incentives Mean: 63.631 Dev: 23.443
Co-Op Promotio	ons X							Value: 2.508 (+0.000) 24.72% 1	Value: 39.095 (+4.044) 0.00% <= 15.424	Value: 63.631 (-2.686) 19.05% <= 41.418
Test Drives	X							24.92% 2 25.18% 3	0.00% <=29.193 71.76% <=41.816	26.86% <=59.661 26.27% <=77.632
Competitive Inc	entives X							25.18% 4	28.24% <=54.778 0.00% >54.778	18.78% <=96.918 9.04% >96.918
Showroom Traff	fic X							Month		
Web Traffic	Х						7	Mean: 6.523 Dev: 3.449 ∀alue: 6.523 (+0.000)	Print Advertisting Mean: 24.226 Dev: 4.260	Web Traffic Mean: 17.515 Dev: 1.837
							1	8.48% 1 7.75% 2	Value: 24.226 (-0.969) 0.00%	Value: 17.515 (+1.029) 1.54%
Synthesis								8.48% 3	17.73%	7.74%
Nodes	Incentives		eting TV Advertising	Internet Advertising	Print Advertisting		-	8.22% 4 8.48% 5	82.27% <=30.668 0.00% <=41.47	32.79% 35.87%
Initial State	47.0845	35	.0508 40.5250	23.6563	25.1951			8.22% 6 8.48% 7	0.00%	22.05%
	25.3532 (-21.7313)	39.0952 (4.		34.5745 (10.9183)	24.2261 (-0.9690)			8.48% 8 8.22% 9	Internet Advertising	Showroom Traffic
Min	25.3532 (-21.7313)	26.9622 (-8.	, , , , , , , , , , , , , , , , , , , ,	31.8450 (8.1887)	24.2261 (-0.9690)			8.48% 10	Internet Advertising Mean: 34.574 Dev: 3.948 Value: 34.574 (+10.918)	Mean: 4.282 Dev: 0.328 Value: 4.282 (-0.148)
Max	36.2189 (-10.8657)	39.0952 (4.	0443) 48.3183 (7.7933)	35.4844 (11.8281)	30.0403 (4.8452)			8.22% 11 8.48% 12	0.00% <=9.91 0.00% <=18.986	5.79% <= 3.746 26.33% <= 4.164
								\N/ankdau	0.00% <=28.786 93.93% <=39.171	39.42% <=4.47 25.52% <=4.747
Best Solutions						_		Weekday Mean: 4.000 Dev: 2.000 ∀alue: 4.000 (-0.000)	6.07%	2.94%
			Internet Advertising P	0		Resources		14.29%	Incentives	Test Drives
25.3532	39.0952	48.3183	34.5745		40 327.5442 (31.5213)			14.29% 2 14.29% 3	Mean: 25.353 Dev: 9.613 Value: 25.353 (-21.731)	Mean: 2.153 Dev: 0.075 Value: 2.153 (-0.026)
27.1641	36.3989	48.3183	34.5745		63 326.8260 (30.8031)	171.6510 (0.1393)		14.29% 4 14.28% 5	43.66% <=24.343 56.34% <=40.389	7.00% <=2.035
25.3532	39.0952	48.3183	34.5745	25.1951 1.68				14.28% 6 14.28% 7	0.00% <=56.721	33.37%
27.1641	36.3989	42.0837	35.4844		03 322.8792 (26.8563)	171.1714 (-0.3404)	r	14.20 /0 /	0.00% <=73.699 0.00% >73.699	27.94% <=2.241 8.01% >2.241
30.7860	28.3103	48.3183	33.6647		75 321.5962 (25.5733)	171.1198 (-0.3920)		End-of-Month Indicator Mean: 0.188 Dev: 0.391		
36.2189	26.9622	48.3183	31.8450		04 317.0880 (21.0651)	171.4467 (-0.0650)		Value: 0.188 (-0.000) 81.21% 0		Cost
36.2189	26.9622	48.3183	33.6647	28.1022 1.80	97 320.4690 (24.4461)	173.2665 (1.7548)	្ដា	18.79%		171.5671321886
			Close Save A	s Print						(171.5117434445)
				Fille			>			
. = 0									GA Score: 1.6339506	16:34 📥 🔞 🕄 🚝 🖡

х

Network Data Edit View Learning Inference Tools Window Help

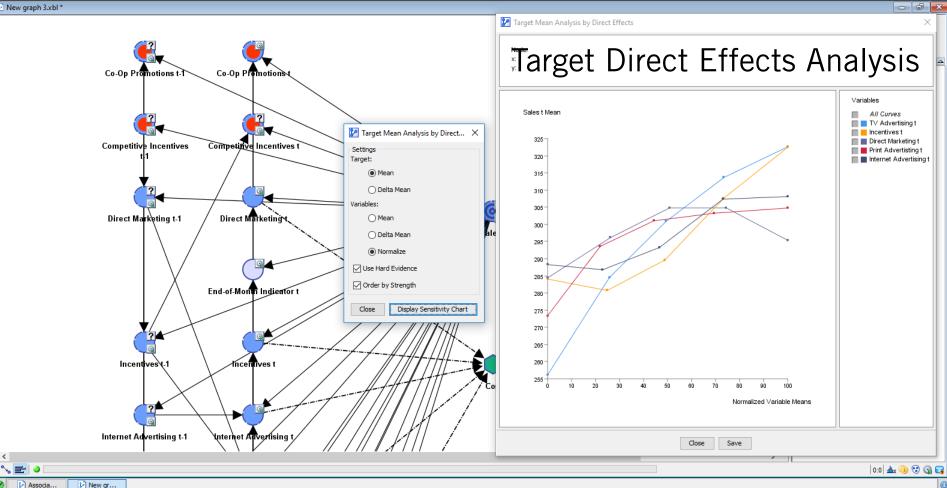
- 6 ×

□ Co :: □ Co :: ○ Co :: </ 🕑 New graph 3.xbl * Network Temporalization Co-Op Promotions t-1 Co-Op Promotions Competitive Incenti Competitive Incentives Direct Marketing t-1 Direct Marketing Sales 1 End-of-Month Indicato Incentives (1 incentives Cost

Internet Allvertising

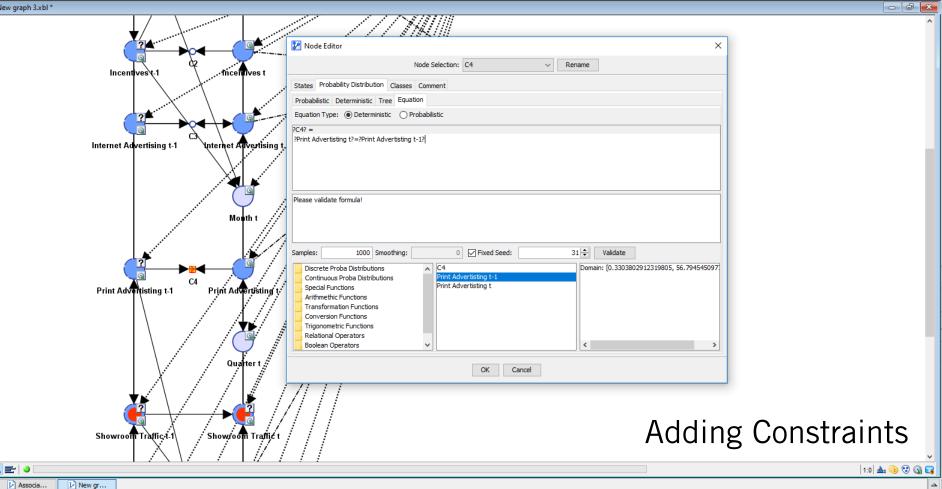
= | 🥥 Associa... 📝 New gr...

Internet Advertising t-1

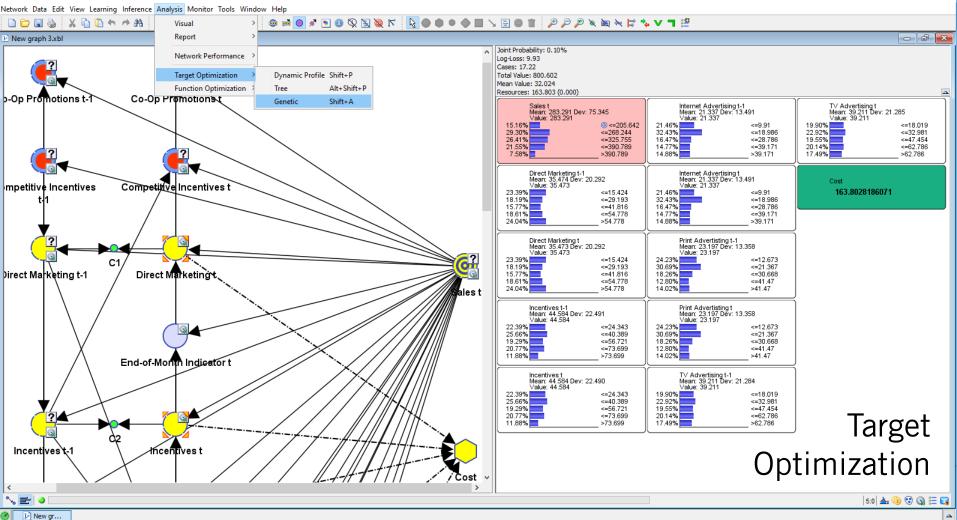

0:0 📥 🕦 🕄 🚱 🕞

PayesiaLab - New graph 3.xbl

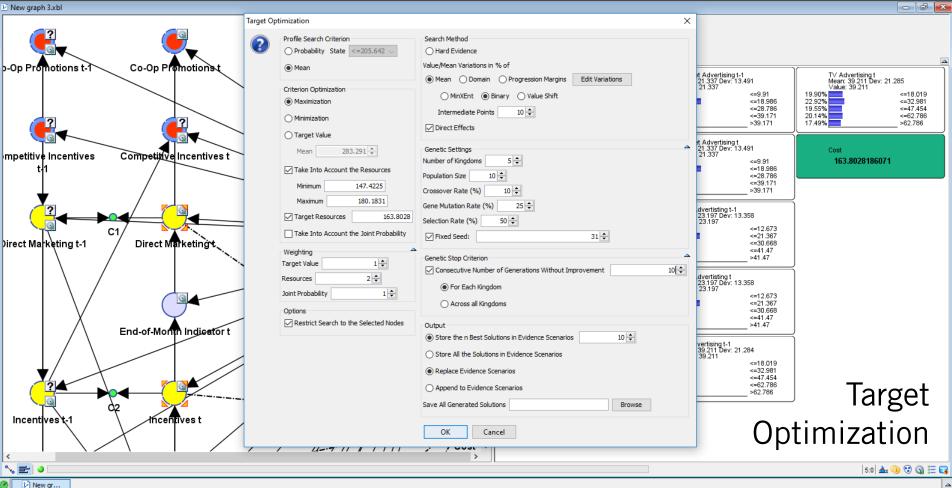
Network Data Edit View Learning Inference Analysis Monitor Tools Window Help


🕑 New graph 3.xbl *

Network Data Edit View Learning Inference Tools Window Help


🗋 🔁 🖬 🎍 🕺 🖍 🐴 🕫 🕂 👭 🔑 🔑 🔛 😂 🕸 🕐 🖉 📾 📾 🚳 🖉 🖉 🐨 🐼 🕲 🖉

New graph 3.xbl *



😰 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Studies\Marketing Mix 2\Lexus\New graph 3.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

□ 🗁 🖬 🎍 🐰 🛍 🗅 や ሎ Ѩ 📁 タ タ 🖉 🗮 🗰 悠 ඵ ඵ 📾 📾 💿 🖉 🗉 🔍 🔍 💐 🔽 👘 🌢 ● ● ● 🔳 ↘ Ξ ● 首 👘 タ ク タ 🔌 🗮 🍾 ∨ ¬ 🖽

New graph 3.xbl

Doptimization Report of Sales t (New graph 3) [7]

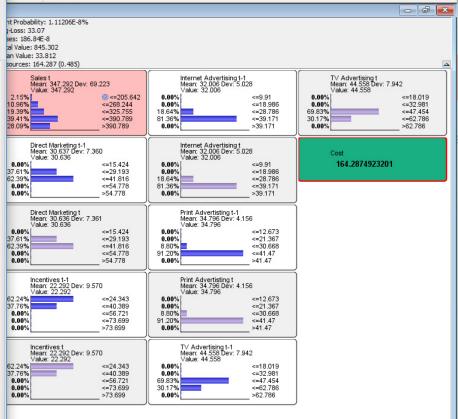
×

Initial State					
Value/Mean	Resources				
283.2911	163.8028				

Search Method: Value/Mean Variations in % of Mean - Fix Probabilities (Binary) - Direct Effects

Not Fixed Nodes

0.0


Node	Non Confounder	Factor	Not Observable
Co-Op Promotions t-1	х		
Co-Op Promotions t	Х		
Test Drives t-1	х		
Print Advertisting t-1	х		
Web Traffic t-1	х		
Test Drives t	Х		
Competitive Incentives t-1	Х		
Showroom Traffic t-1	х		
Competitive Incentives t	х		
Direct Marketing t-1	X		
Internet Advertising t-1	X		
Showroom Traffic t	х		
Web Traffic t	х		
Incentives t-1	х		
TV Advertising t-1	х		

Synthesis	nthesis									
Nodes	Print Advertisting t	Internet Advertising t	Incentives t	Direct Marketing t	TV Advertising t					
Initial State	23.1973	21.3372	44.5840	35.4735	39.2108					
Best Solution	34.7960 (11.5987)	32.0058 (10.6686)	22.2920 (-22.2920)	30.6362 (-4.8373)	44.5577 (5.3469)					
Min	22.1429 (-1.0544)	22.3071 (0.9699)	22.2920 (-22.2920)	20.9616 (-14.5119)	40.9931 (1.7823)					
Max	34.7960 (11.5987)	32.0058 (10.6686)	46.6105 (2.0265)	33.8610 (-1.6124)	55.2516 (16.0408)					

Close

Best Solutions							
Print Advertisting t	Internet Advertising t	Incentives t	Direct Marketing t	TV Advertising t	Score	Value/Mean	Resources
34.7960	32.0058	22.2920	30.6362	44.5577	1.4787	347.2922 (64.0012)	164.2875 (0.4847)
34.7960	30.0661	22.2920	30.6362	44.5577	1.5911	341.0152 (57.7242)	162.3477 (-1.4551)
30.5783	22.3071	22.2920	33.8610	55.2516	1.6423	329.3229 (46.0319)	164.2898 (0.4870)
22.1429	32.0058	46.6105	20.9616	40.9931	1.7613	321.5851 (38.2941)	162.7138 (-1.0890)

] 🕒 👔 🔎 🔎 🖉 🔌 🙀 🍬 🗸 🗂 🕮

Optimization Results

Save As... Print

GA Score: 1.4787359

🕐 📝 New gr...

BAYESIALAB

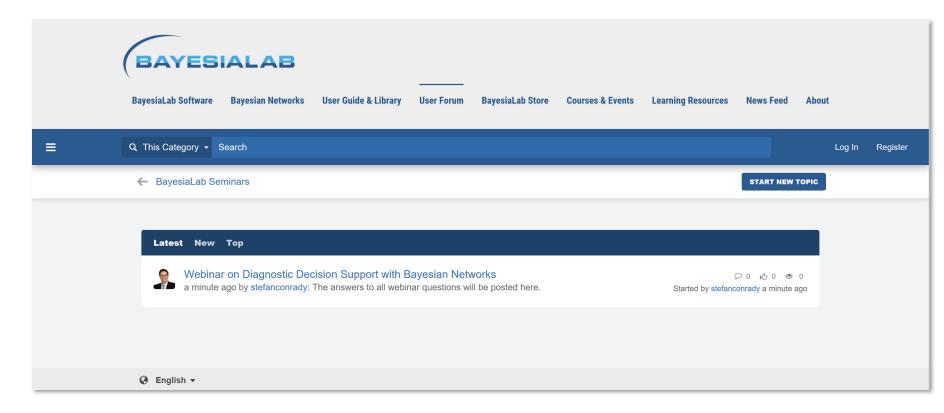
In Conclusion...

Webinar Series: Friday at 1 p.m. (Central)

Upcoming Webinars:

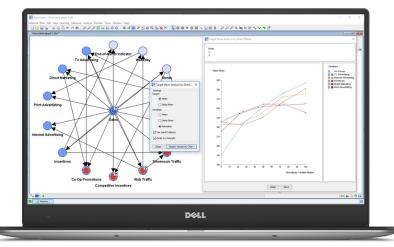
- April 13 Analyzing Capital Flows of Exchange-Traded Funds
- April 20 GIS Mapping with BayesiaLab

Register here: bayesia.com/events



November 5–7, 2018: Chicago Advanced BayesiaLab Course

User Forum: bayesia.com/community



BayesiaLab Trial

Try BayesiaLab Today!

- Download Demo Version:
 <u>www.bayesialab.com/trial-download</u>
- Apply for Unrestricted Evaluation Version: <u>www.bayesialab.com/evaluation</u>

BayesiaLab Courses Around the World in 2018

- April 11–13
 Sydney, Australia
- May 16–18
 Seattle, WA
- June 26–28
 Boston, MA
- July 23–25
 San Francisco, CA

- August 29–31
 London, UK
- September 26–28
 New Delhi, India
- October 29–31
 Chicago, IL
- December 4–6
 New York, NY

Learn More & Register: bayesia.com/events

6th Annual BayesiaLab Conference in Chicago November 1–2, 2018

Thank You!

stefan.conrady@bayesia.us

BayesianNetwork

linkedin.com/in/stefanconrady

facebook.com/bayesia