

Today's Program

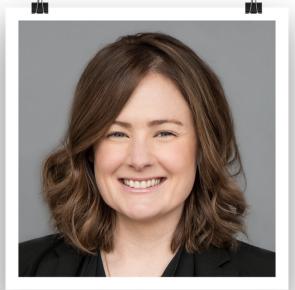
Introduction

- Our Team
- Our Company
- Our Technology

Introductory Software Demo

Mapping with BayesiaLab and the Google Maps API


Spatial Computation & Optimization


- Example 1: Drive Time Bands
- Example 2: Hub Location Optimization

Your BayesiaLab Team Today

stefan.conrady@bayesia.us

stacey.blodgett@bayesia.us

clare.gora@bayesia.us

Disambiguation

Our Product

The Paradigm

BAYESIAN NETWORKS*

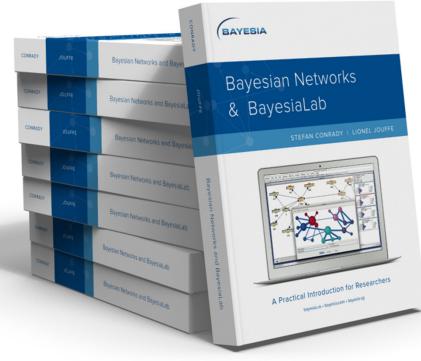
Judea Pearl

Cognitive Systems Laboratory Computer Science Department University of California, Los Angeles, CA 90024 *judea@cs.ucla.edu*

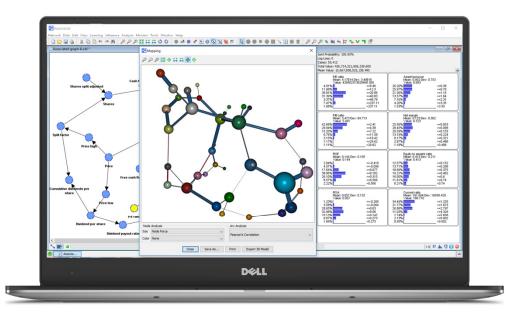
Bayesian networks were developed in the late 1970's to model distributed processing in reading comprehension, where both semantical expectations and perceptual evidence must be combined to form a coherent interpretation. The ability to coordinate bi-directional inferences filled a void in expert systems technology of the early 1980's, and Bayesian networks have emerged as a general representation scheme for uncertain knowledge [Pearl, 1988, Heckerman *et al.*, 1995, Jensen, 1996, Castillo *et al.*, 1997].

Bayesian networks are directed acyclic graphs (DACs) in which the nodes represent vari-

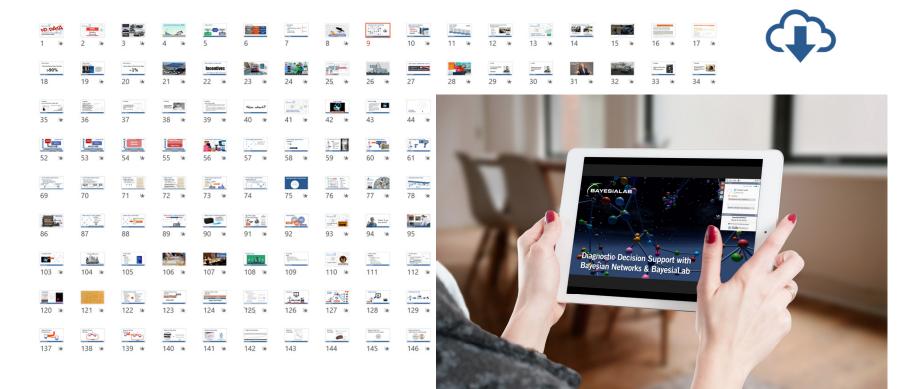
Co-founded in 2001 by Dr. Lionel Jouffe & Dr. Paul Munteanu



Bayesian Networks & BayesiaLab


A Practical Introduction for Researchers

- Free download: <u>www.bayesia.com/book</u>
- Hardcopy available on Amazon: <u>http://amzn.com/0996533303</u>

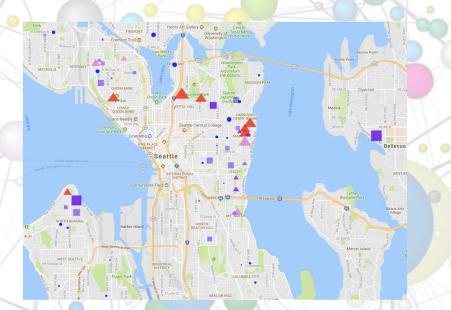


A desktop software for:


- encoding
- learning
- editing
- performing inference
- analyzing
- 8 GIS
- simulating
- optimizing

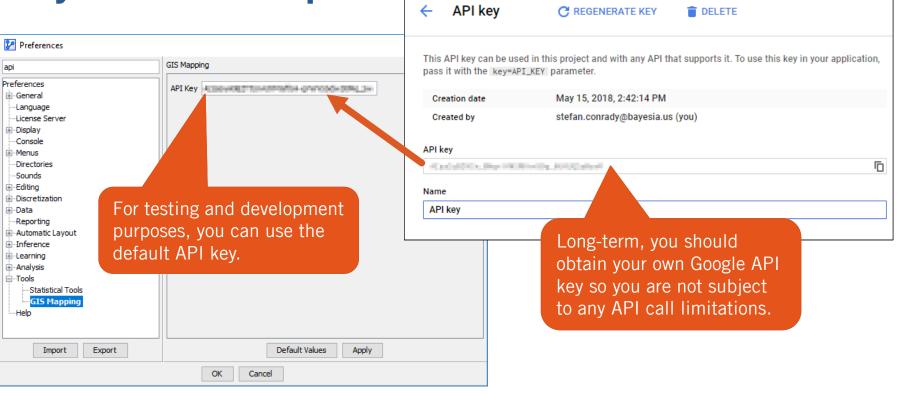

with Bayesian networks.

Webinar Slides, Data, and Recording Available



stefan.conrady@bayesia.us

BAYESIALAB



GIS Mapping with BayesiaLab and the Google API

Google Maps JavaScript API

	Google APIs		۹						0	9	:	\$
API	APIs & Services	Dashboard 🛨 ENABLI	E APIS AND SERVICE	S								
¢	Dashboard	Enabled APIs and services										
쁐 ~	Library Credentials	Some APIs and services are enabled auto	matically		1	hour 6 hours 12 hour	s 1 day 2 days	4 days	7 days	14 days	30 da	ys
		Traffic		Errors			Median latenc	у				
		Requests/sec		Percent of reques	ts	Villiseconds				_		
		2.5		0.05			3,000					
		1.5		0.04			2,000					
		1		0.02			1,000					
		0.5 May 16 M	lay 17, 8:23 AM	0.01	May 16	May 17, 8:23 AM		May 16		May 17, 8	23 AM	
		API	✓ Requests	Errors	Error ratio	Latency, med	ian la	atency, 98%				
		Distance Matrix API	33,688	3	0.01%	396		986 ms		ble 🏚		
		Maps JavaScript API	29	0	0%		-	12	Disa	ble 🔹		
<1		Directions API	8 -	12			-	12	Disa	ble 🔹		

BayesiaLab Setup

 \equiv

Google APIs

GIS Mapping with BayesiaLab and the Google API

The Basics

- BayesiaLab can display observed or inferred values with coordinates on a Google map.
- Longitude and latitude are used as coordinates.
- Longitude and latitude must be defined as continuous variables and discretized during import, even though they will be used as undiscretized values for map display.

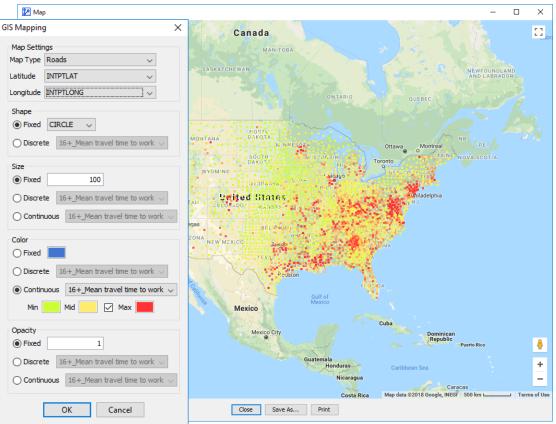
Туре	Action	1						
🔿 Not Distrib	uted Co	Columns with Missing Values						
◯ Discrete		All not Distributed All Discrete						
Continuous	s							
🔿 Weight		All Continuo	us					
O Learning/T	est							
O Row Ident	ifier							
Data								
Longitude (2)	Latitude (2)	City (2)	State (2)					
-75.57	38.46	Delmar	DE					
	41.52	Sheridan	1					
-88.68								
-88.68 -98.62	29.62	San Antonio	тх					
-88.68 -98.62 -111.89	29.62 40.76		тх ∪т					
-98.62								
-98.62 -111.89	40.76	Salt Lake City	υT					
-98.62 -111.89 -116.11	40.76 44.07	Salt Lake City Banks	υT					
-98.62 -111.89 -116.11 -78.8	40.76 44.07 35.8	Salt Lake City Banks Cary	UT ID ME					
-98.62 -111.89 -116.11 -78.8 -68.49	40.76 44.07 35.8 46.41	Salt Lake City Banks Cary Oxbow	UT ID ME					
-98.62 -111.89 -116.11 -78.8 -68.49 -117.82	40.76 44.07 35.8 46.41 33.6	Salt Lake City Banks Cary Oxbow Newport Coast	UT ID ME CA					
-98.62 -111.89 -116.11 -78.8 -68.49 -117.82 -87.49	40.76 44.07 35.8 46.41 33.6 36.85	Salt Lake City Banks Cary Oxbow Newport Coast Hopkinsville Taunton	UT ID ME CA KY					
-98.62 -111.89 -116.11 -78.8 -68.49 -117.82 -87.49 -71.09	40.76 44.07 35.8 46.41 33.6 36.85 41.9	Salt Lake City Banks Cary Oxbow Newport Coast Hopkinsville Taunton	UT ID ME CA KY MA					
-98.62 -111.89 -116.11 -78.8 -68.49 -117.82 -87.49 -71.09 -91.95	40.76 44.07 35.8 46.41 33.6 36.85 41.9 35.55	Salt Lake City Banks Cary Oxbow Newport Coast Hopkinsville Taunton Tumbling Sh	UT ID ME CA KY MA					

GIS Mapping with BayesiaLab and the Google API

Window Help		GIS Mapping	×
ulti-Run	>	Map Settings	_
sampling	>	Map Type Roads ~	
ssing Values Analysis		Latitude INTPTLAT ~	
2	_	Longitude	
ulti-Quadrant Analysis		Shape	
dence Instantiation		Fixed CIRCLE	
essment	>	O Discrete 16+_Mean travel time to work <>	
	~	Size	
amic Bayesian Networks		Fixed 100	
Mapping		\bigcirc Discrete 16+_Mean travel time to work \smallsetminus	
		O Continuous 16+_Mean travel time to work	~
gn of Experiments	>	Color	
Simulator Editor		O Fixed	· · · ·
	_	O Discrete 16+ Mean travel time to work \checkmark	
pare	>	Continuous 16+_Mean travel time to work	
		Min Mid Max	×
		Opacity	
		Fixed	
		O Discrete 16+_Mean travel time to work <>	
		O Continuous 16+_Mean travel time to work	~
		OK Cancel	

tributes can be ed per observations:

- pe
-)r
- icity


BayesiaLab.com

Tools

Introductory Example: Mapping Commuting Time

Commuting Time by County

」 🗋 🎍 📜 🥻 争 🕅 中 府 船 🗍 🤌 戸 🎘 Associated graph 14xb)*	Shape Fixed Discrete
	Size Fixed Discr Cont
16+_Mean travel time to work	Color Fixed Discr Cont Min
	Opacity
	ODiscr

BAYESIALAB

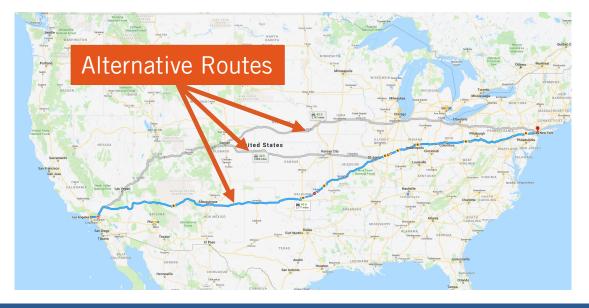
Spatial Learning and Optimization

Bayesian Networks & BayesiaLab

Spatial Learning and Optimization

Optimization Problems Under Consideration

- 1. One origin, one destination
- 2. One origin, many destinations
- 3. Many origins, one destination
- 4. Many origins, one hub, many destinations
- 5. Many origins, multiple hubs, many destinations


Common Objective

- → Shortest Path Problem
- ➔ Drive Time Bands
- ➔ Store Location Problem
- → Hub Location Problem
- ➔ Multi-Hub Location Problem

- Minimize "cost function," e.g., travel time, distance, fuel consumption, number of turns, etc.
- Further assumption: all "participants" have same objective.

Computing the "Cost" for One Origin and One Destination

• "Search the Map" → slow, but accurate

Computing the Cost for One Origin and Many Destinations

• "Search the Map" → slow, but accurate

Computing the Cost

- "Search the Map" \rightarrow slow, but accurate
- Great-Circle Distance Computation

$$d = 2r rcsin \Big(\sqrt{ \mathrm{hav}(arphi_2 - arphi_1) + \mathrm{cos}(arphi_1) \cos(arphi_2) \, \mathrm{hav}(\lambda_2 - \lambda_1)} \Big) \; .$$

$$=2r rcsin igg(\sqrt{ \sin^2igg(rac{arphi_2 - arphi_1}{2} igg) + \cos(arphi_1) \cos(arphi_2) \sin^2igg(rac{\lambda_2 - \lambda_1}{2} igg) } igg)$$

- Easy and fast to
- calculate. "As the crow flies" may be an unrealistic ٠ assumption.
- Travel time may be more relevant that • distance.

Idea: "Create a Look-Up Table for All Origin-Destination Pairs"

- 29,788 ZIP Codes in the U.S.
- A complete distance matrix would contain 887,324,944 cells.
- Current computation speed with Google Distance Matrix API: 2 requests/sec.
- Estimated computation time: ~14 years.

APProximate

Idea

• Approximation through machine learning.

Proposed Approach

- Utilize database of actual point-to-point travel data.
- Learn a Bayesian network from this dataset.
- Now we can infer the "cost" as a function of origin and destination.

BayesiaLab.com

Drive Time Bands

Workflow in Detail

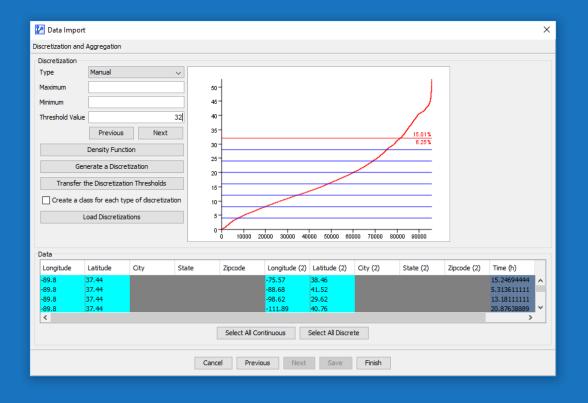
- Take a random sample (~100,000) of origindestination ZIP code pairs and calculate routes with the Google Distance Matrix API.
- Perform Augmented Naïve Learning.
- Evaluate Target Performance.
- Associate new data set with points to be evaluated.
- Generate map.

🗋 🗁

🕗 Data Impo	ort								×		
efine Data Stru	ucture										
Separators Tab Space	Semicolon	Comma	Encoding UTF	-		Options Title Line Consider Identical Consecutive separators as a Unique One					
N/R NR NC	^	Add Remove	VF Add So So diago Different Consecu FV Add Consider Different Consecu N/A Remove Double Quote as String Deli								
Sampling	Define Sample		Learning/Tes	st ne Learning/Test S	Sets	Single Quote as String Delimiters					
Data											
Longitude	Latitude	City	State	Zipcode	Longitude (2)	Latitude (2)	City (2)	State (2)	Zipcode (2)		
-89.8 -89.8 -89.8 -89.8 -89.8 -89.8 -89.8 -89.8 -89.8 -89.8 -89.8 -89.8 -89.8 -89.8 -89.8 -89.8 -89.8 -89.8	37.44 37.44 37.44 37.44 37.44 37.44 37.44 37.44 37.44 37.44 37.44 37.44 37.44	Milersvile Milersvile Milersvile Milersvile Milersvile Milersvile Milersvile Milersvile Milersvile Milersvile	MO MO MO MO MO MO MO MO	63766 63766 63766 63766 63766 63766 63766 63766 63766 63766 63766 63766 63766	-75.57 -88.68 -98.62 -111.89 -116.11 -78.8 -68.49 -117.82 -87.49 -71.09 -91.95 -79.16	38.46 41.52 29.62 40.76 44.07 35.8 46.41 33.6 36.85 41.9 35.55 36.4	Delmar Sheridan San Antonio Salt Lake City Banks Cary Oxbow Newport Coast Hopkinsville Taunton Tumbling Sh Leasburg	KY MA	1990 ▲ 60551 78256 84133 83602 27513 4764 92657 42240 2780 72581 27291 ↓		
			Cancel	Previous	Next Sa	ve Finis	h				

🗋 🗁

Х


~

efine Variable	Туре								
Туре	A	Action		Information					
Not Distr	ibuted	Columns with Mi	ssing Values	Number of Row	vs 95710	100.00%			
O Discrete		All not Dist	ributed	Not Distributed	1 7	58.33%			
Obidete				Discrete	0	0.00%			
Continuo	us	All Discr	ete	Continuous	5	41.67%			
○ Weight		All Contin	uous	Others	0	0.00%			
· ·				Missing Values	0	0.00%			
OLearning	/Test			-					
O Row Ider	ntifier			Filtered Values	0	0.00%			
Data							1		-
Longitude	Latitude	City	State	Zipcode	Longitude (2)	Latitude (2)	City (2)	State (2)	Zipcode (2)
-89.8	37.44	Millersville	MO		-75.57	38.46	Delmar	DE	19940
-89.8	37.44	Millersville	MO		-88.68	41.52	Sheridan	IL	60551
-89.8	37.44	Millersville	MO		-98.62	29.62	San Antonio	ТХ	78256
-89.8	37.44	Millersville	MO		-111.89	40.76	Salt Lake City		84133
-89.8	37.44	Millersville	MO		-116.11	44.07	Banks	ID	83602
-89.8	37.44	Millersville	MO		-78.8	35.8	Cary		27513
-89.8	37.44	Millersville	MO		-68.49	46.41	Oxbow	ME	4764
-89.8	37.44	Millersville	MO	63766	-117.82	33.6	Newport Coast	: CA	92657
-89.8	37.44	Millersville	MO	63766	-87.49	36.85	Hopkinsville	KY	42240
-89.8	37.44	Millersville	MO	63766	-71.09	41.9	Taunton	MA	2780
-89.8	37.44	Millersville	MO	63766	-91.95	35.55	Tumbling Sh	AR	72581
-89.8	37.44	Millersville	MO	63766	-79.16	36.4	Leasburg		27291
-89.8	37.44	Millersville	MO	63766	-80.35	36.47	Westfield		27053
-89.8	37.44	Millersville	MO	63766	-92.9	42.77	Bristow	IA	50611
<									

🗋 🗁

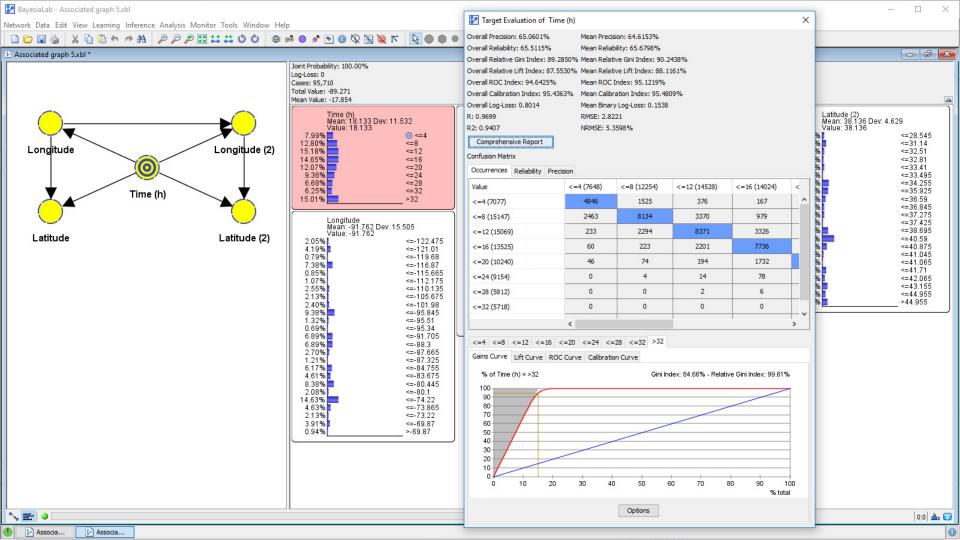
🔀 Data Import									×
Data Selection and Filtering									
Missing Value Processing				Info	mation				
Filter	Num								
OR				Not	Distributed	7	58.33%		
				Disc	rete	0	0.00%		
O Replace by :	~		Con	tinuous	5	41.67%			
○ Value				Oth	ers	0	0.00%		
O Mean/Modal				Miss	ing Values	0	0.00%		
○ Infer				Filte	red Values	0	0.00%		
Static Imputation				Sele	t Values				
O Dynamic Imputation				0	OR	Selections			
Structural EM				AND Display Selections					
Entropy-Based Static Imputat	on								
Entropy-Based Dynamic Imput									
Data									
Longitude 🔻 Latitude 👻 City	State	Zipcode	Longitu		Latitude 🔻	City (2)	State (2) Zipcode (2)	Time (h) 🔻
-89.8 37.44 -89.8 37.44			-75.57 -88.68		38.46 41.52				15.24694444 A
-89.8 37.44			-98.62		71.52 29.62				13.18111111
-89.8 37.44			-111.89		40.76				20.87638889
-89.8 37.44			-116.11		44.07				25.88611111 🗸
<									>
		Select All Con	ntinuous	S	elect All Discre	te			
	Cance	el Previo	us N	lext	Save	Finish			
						_	_		

1

0

Гуре	Tree		\sim								
Intervals		25	÷								
Farget	Time (h)		~								
-		type of discretiza									
Create a	a class for each	type of discretiza	tion								
	Load Discreti	zations									
ata											
Longitude	Latitude	City	State	Zipcode	Longitude (2)	Latitude (2)	City (2)	State (2)	Zipcode (2)	Time (h)	T
-89.8	37.44				-75.57	38.46				15.24694444	1
-89.8	37.44				-88.68	41.52				5.313611111	
89.8	37.44				-98.62	29.62				13.18111111	
-89.8	37.44				-111.89	40.76				20.87638889	
-89.8	37.44				-116.11	44.07				25.88611111	
-89.8	37.44				-78.8	35.8				11.67916667	
89.8	37.44				-68.49	46.41				24.59388889	
-89.8	37.44				-117.82	33.6				27.59416667	
-89.8	37.44				-87.49	36.85				2.9425	
-89.8	37.44				-71.09	41.9				19.25972222	
	37.44				-91.95	35.55				4.341944444	
-89.8					-79.16	36.4				11.54527778	
89.8 89.8	37.44										

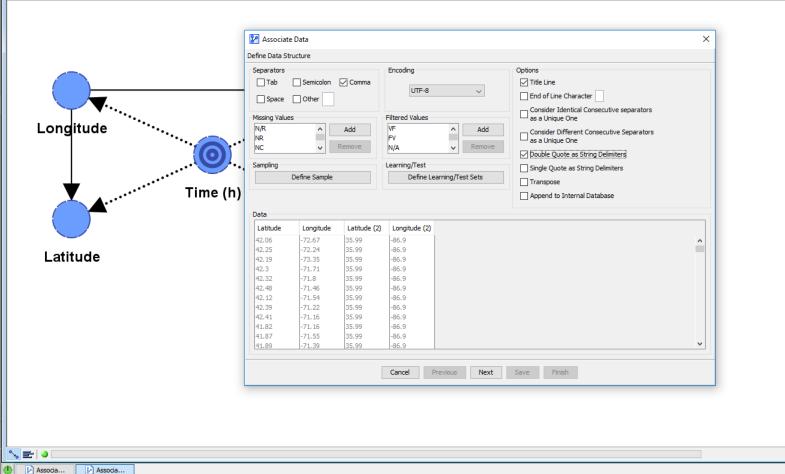
🛃 BayesiaLab - Associated graph 5.xbl


Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

Assoc

Associated graph 5.xbl *										
Associated graph 5.xbl*	Time (h)	Longitude (2)		0 0 2 4 6 3 0 1 4 2 8 1 2 8 122.475 3 121.01 3 119.68 3 116.87 2 110.135 0 95.845 0 95.845 0 95.51 0 95.75 0 91.705 3 93.675 3 94.755 3 93.675 80.445 90.1 7 74.22 73.865 73.22 73.825	Latitude Mean: 38,133 Dev: 4,6 Value: 38,133 88% 87% 19% 47% 09% 47% 09% 51% 51% 51% 51% 51% 69% 38% 44% 25% 99% 25% 99%	636 <=27.31 <=28.98 <=31.14 <=32.76 <=32.735 <=33.25 <=34.955 <=40.445 <=40.495 <=40.895 <=41.71 <=42.065 <=43.94 <=43.94 <=44.99 <=45.555 <=46.285 <=47.42 >47.42	Longitude (2) Mean: 91.911 Der 2.20% 1.29% 2.42% 1.6% 7.33% 1.30% 0.50% 2.91% 2.40% 1.26% 0.50% 2.91% 1.26% 6.01% 1.26% 1.16% 9.48% 1.86% 1.86% 1.66% 1.16% 0.53% 1.16% 0.80% 8.78% 1.09% 0.80% 8.78% 1.09% 0.22% 1.09% 0.25%	v: 15.538 <=-122.475 <=-122.095 <=-112.085 <=-118.945 <=-116.945 <=-116.945 <=-116.215 <=-103.095 <=-95.765 <=-95.765 <=-95.765 <=-95.741 <=-95.765 <=-92.185 <=-87.545 <=-83.98 <=-80.445 <=-74.315 <=-73.865 <=-73.22 <=-69.87 >-69.87	Latitude (2) Mean: 38.136 2.64% 3.05% 1.62% 2.34% 0.74% 8.71% 7.78% 2.23% 2.29% 2.43% 0.56% 7.97% 1.68% 0.56% 0.56% 0.56% 0.26% 0.26% 0.26% 0.56% 0.26% 0.56% 0.56% 0.56% 0.56%	
			2.13%	73.22 69.87						
										0:0 📥 🕤
🕛 🕑 Associa 📝 A	Associa									0

- **S**



😰 BayesiaLab - C:\Users\StefanConrady\OneDrive - Bayesia USA\Studies\GIS\Demo\Associated graph 5.xbl

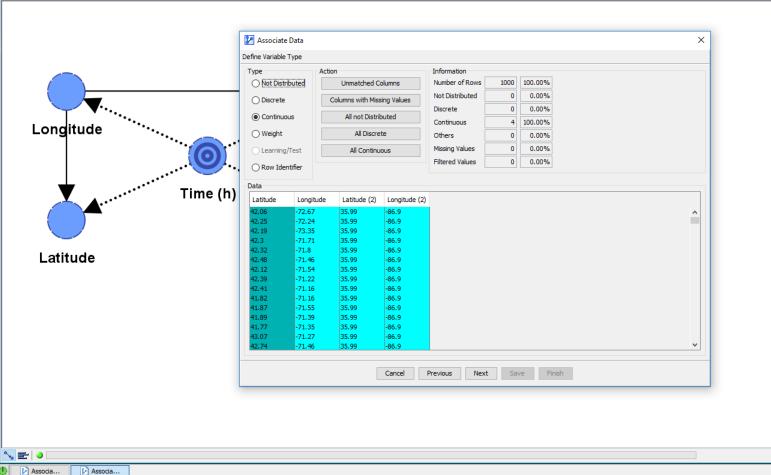
Network Data Edit View Learning Inference Tools Window Help

□ 🗁 🖬 🎍 🐰 🗅 🛍 ← 🖻 Ϻ 🔑 🔑 🔛 🗮 🗰 🙂 🕸 🕲 🖉 🖷 🔿 🖉 💽 🎯 🛇 🗟 💊 🗍 🗸 😁 🧇 🗂

E Associated graph 5.xbl

 \Box \times

0:0 📥 🕤


Δ

🕜 BayesiaLab - C:\Users\StefanConrady\OneDrive - Bayesia USA\Studies\GIS\Demo\Associated graph 5.xbl

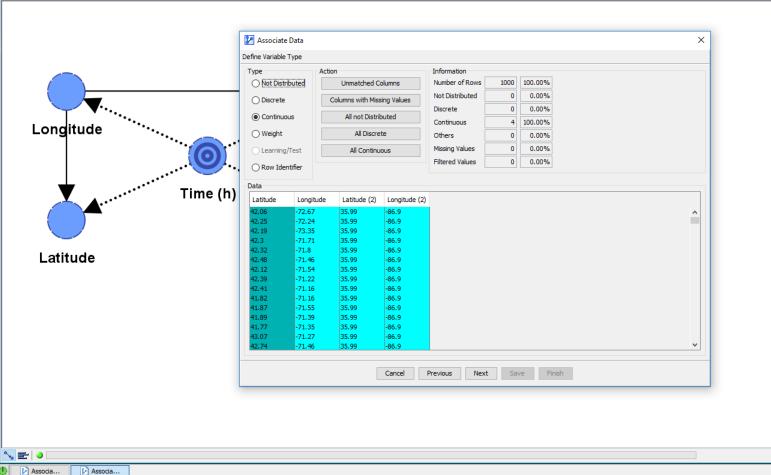
Network Data Edit View Learning Inference Tools Window Help

□ 🗁 🖬 🎍 🐰 🗅 🛍 ಈ 🖻 ቶ 🖉 🔎 🖉 🗮 🗰 🕸 🕐 🖉 🗮 🗮 🗰 🌒 🖉 💽 🚳 🐼 💽 🚳 🚫 💽 💊 🔲 🗸 🚍 🤤 🗊

Associated graph 5.xbl

- 🗆 X

-


0:0 📥 🕤

🕜 BayesiaLab - C:\Users\StefanConrady\OneDrive - Bayesia USA\Studies\GIS\Demo\Associated graph 5.xbl

Network Data Edit View Learning Inference Tools Window Help

□ 🗁 🖬 🎍 🐰 🗅 🛍 ಈ 🖻 ቶ 🖉 🔎 🖉 🗮 🗰 🕸 🕐 🖉 🗮 🗮 🗰 🌒 🖉 💽 🚳 🐼 💽 🚳 🚫 💽 💊 🔲 🗸 🚍 🤤 🗊

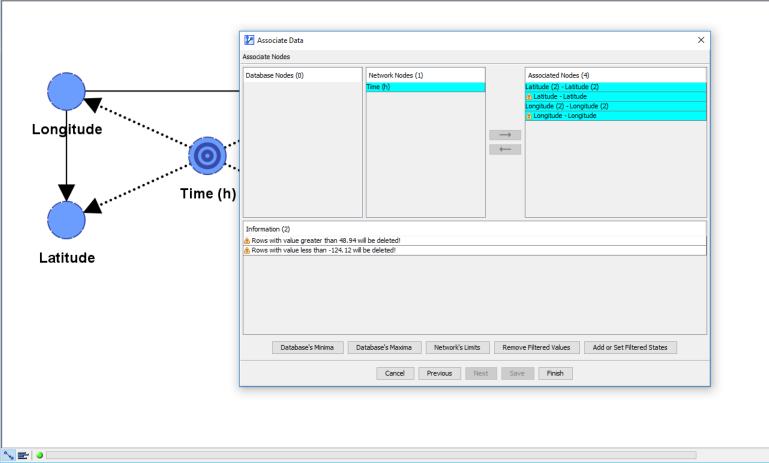
Associated graph 5.xbl

- 🗆 X

-

0:0 📥 🕤

😰 BayesiaLab - C:\Users\StefanConrady\OneDrive - Bayesia USA\Studies\GIS\Demo\Associated graph 5.xbl


Network Data Edit View Learning Inference Tools Window Help

□ 🗀 🖓 🐇 🗅 🗂 ← # # 🖉 🖉 🖉 🗮 🗱 🛎 ७ ৩ 🖉 📾 🖉 🔍 🔍 💐 🚺 🖉 🗢 ♦ 🖬 🗤 🖓 🖾 🗯

🕑 Associated graph 5.xbl

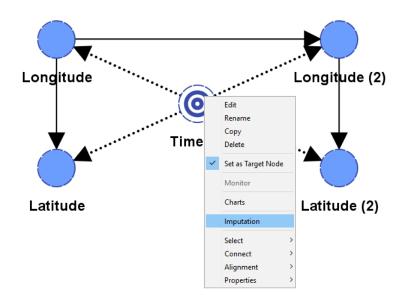
Associa...

Associa...

 \Box \times

_

Δ


Network Data Edit View Learning Inference Tools Window Help

□ 🗁 🖬 🎍 🐰 🗅 🛍 ಈ 🖻 ቶ 🖉 🔎 🛤 🗱 🗰 🕸 🙂 🖉 😂 🚔 🔍 🖉 🔍 🕲 🐼 🔯 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉

🖹 Associated graph 5.xbl *

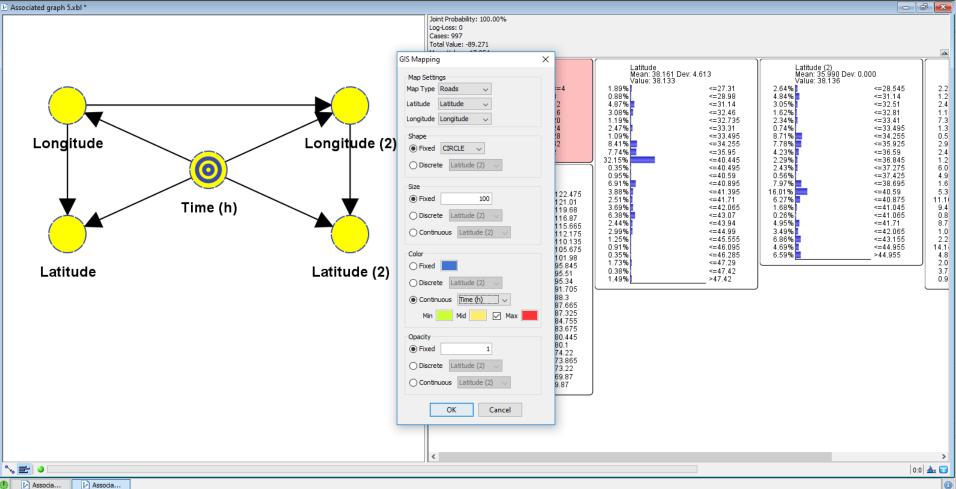
🍾 🛃 🥥 🛄

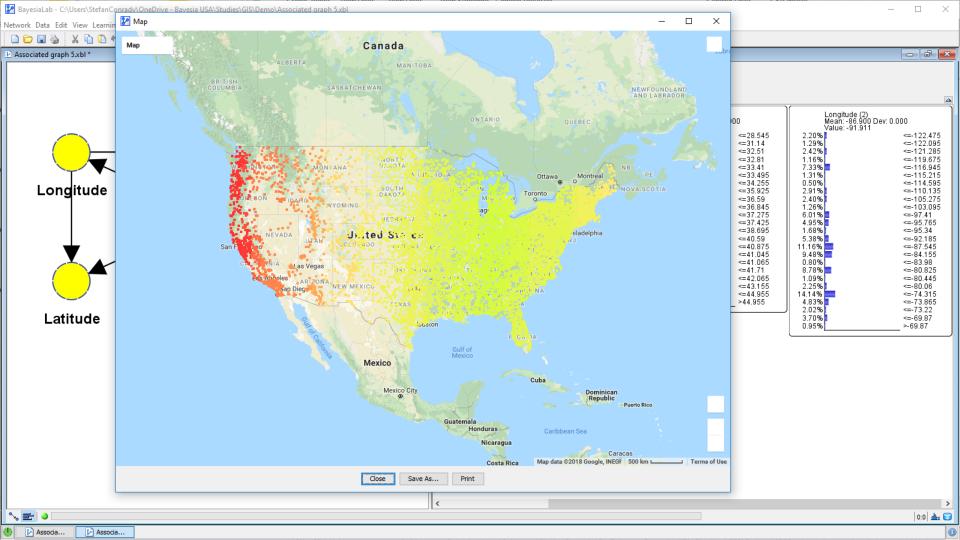

Associa...

0

- - - - X

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help




🜠 BayesiaLab - C:\Users\StefanConrady\OneDrive - Bayesia USA\Studies\GIS\Demo\Associated graph 5.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

Drive Time Bands

Computing the Cost

- "Search the Map"
- Great-Circle Distance Computation
- Learn & Infer

- \rightarrow slow, but accurate
- ➔ fast, but inaccurate
- → fast and good approximation

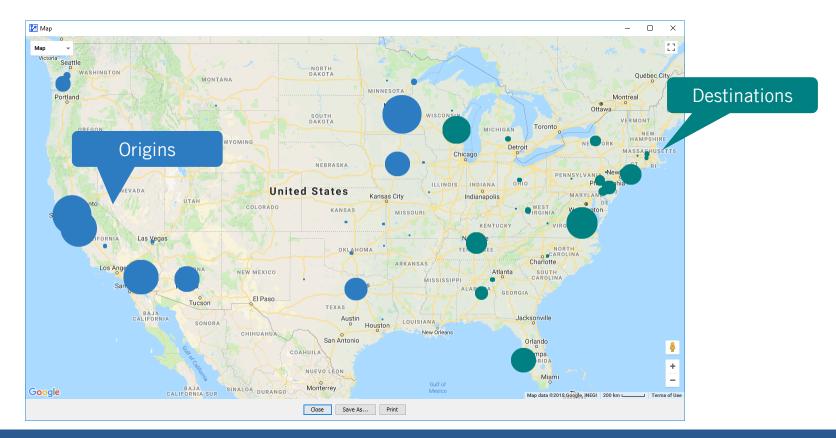
BAYESIALAB

Spatial Learning and Optimization

Example 2: Hub Location

Spatial Learning and Optimization

Optimization Problems Under Consideration

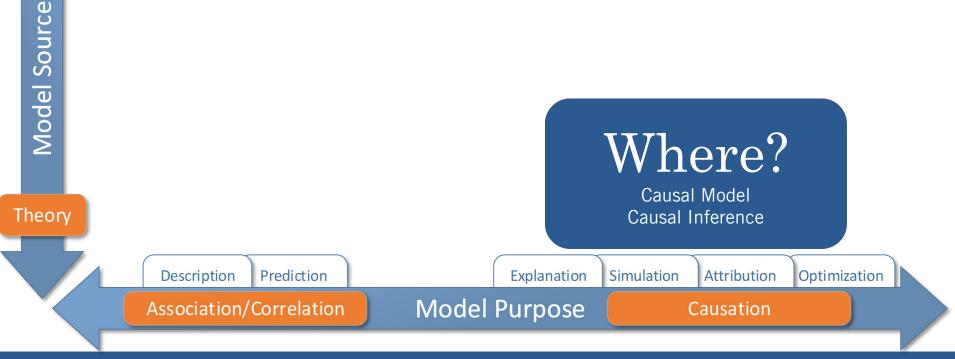

- 1. One origin, one destination
- 2. One origin, many destinations
- 3. Many origins, one destination
- 4. Many origins, one hub, many destinations
- 5. Many origins, multiple hubs, many destinations

General Objective

- ➔ Shortest Path Problem
- ➔ Drive Time Bands
- ➔ Store Location Problem
- → Hub Location Problem
- ➔ Multi-Hub Location Problem

- Minimize "cost function," e.g., travel time, distance, fuel consumption, number of turns, etc.
- Further assumption: all "participants" have same objective.

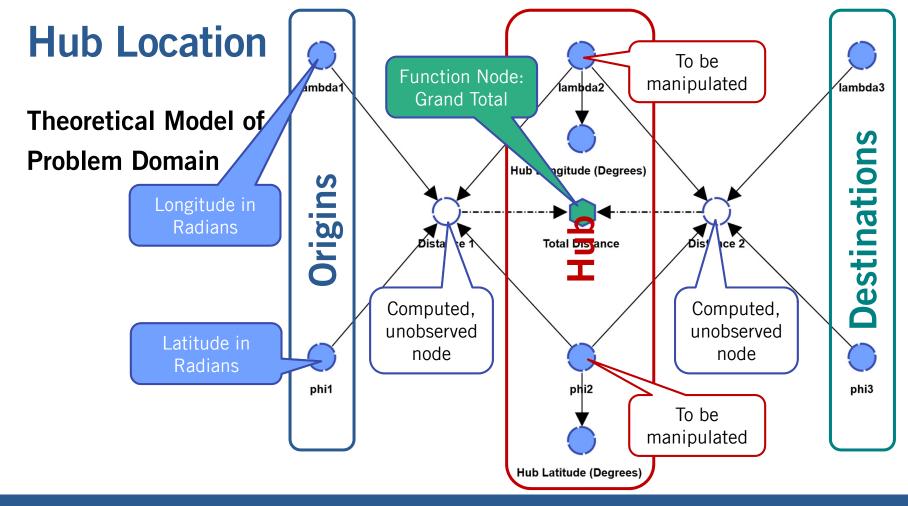
Hub Location Problem

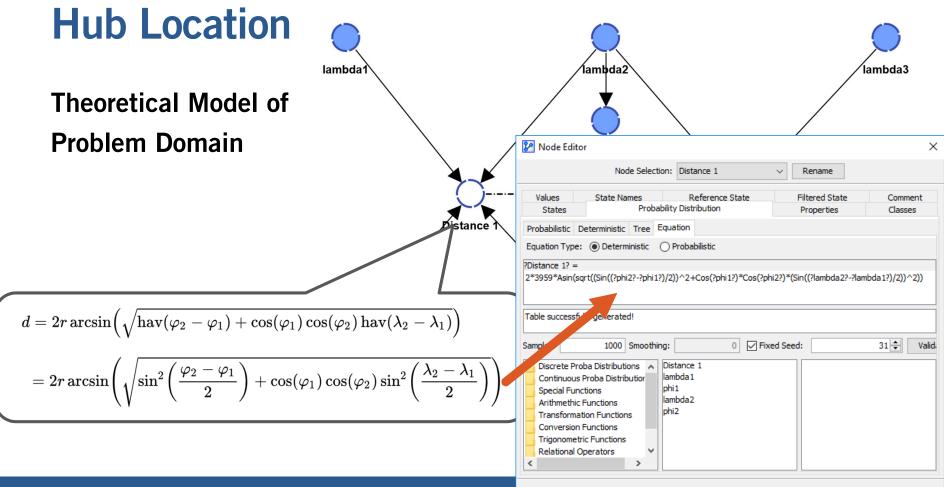


Hub Location Problem

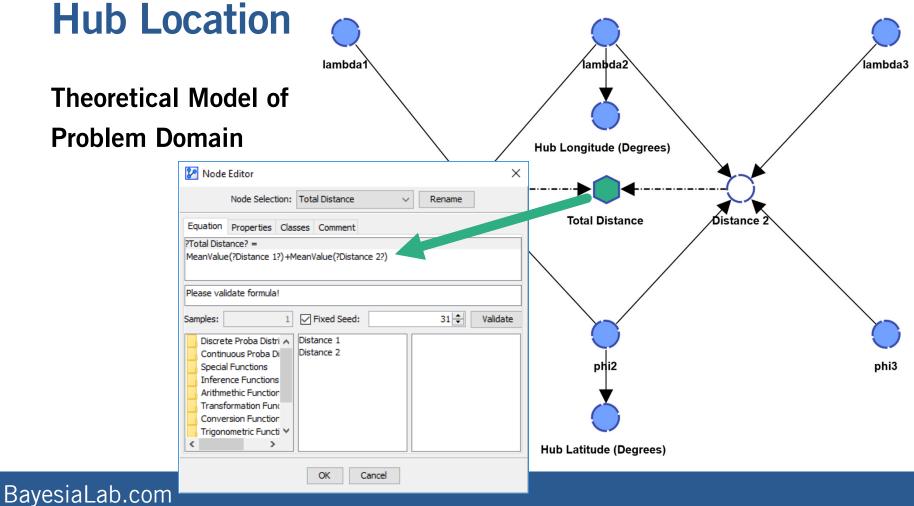
Workflow

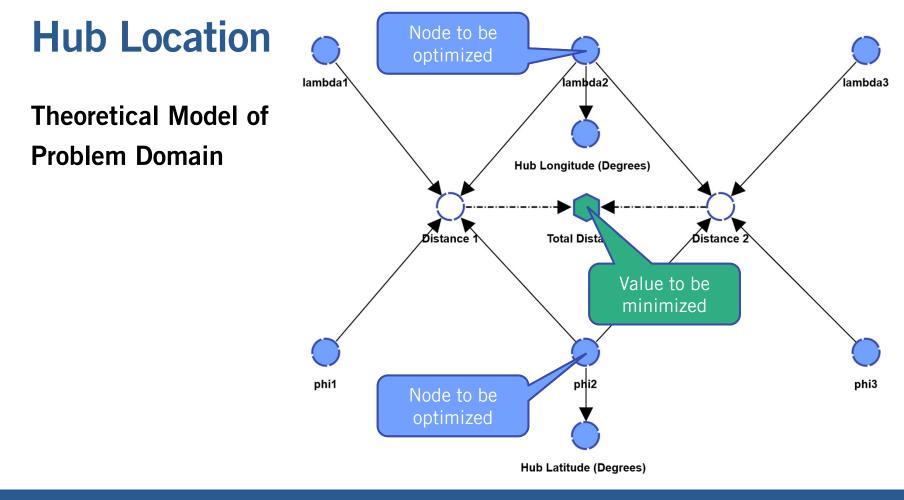
- Encode theoretical model of problem domain.
- Define Nodes
 - Observed
 - Unobserved
 - Functions
- Load data for origins and destinations.
- Perform Function Optimization.

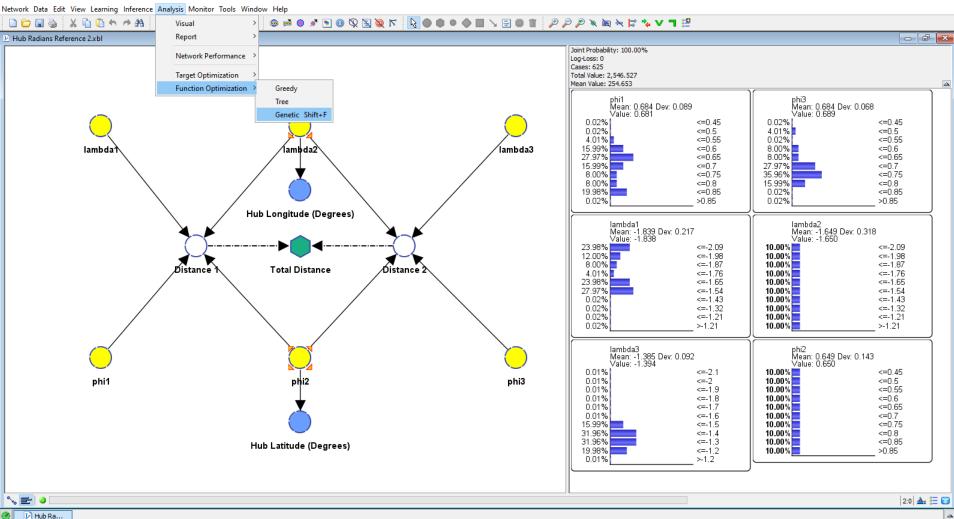

Map of Analytic Modeling & Reasoning

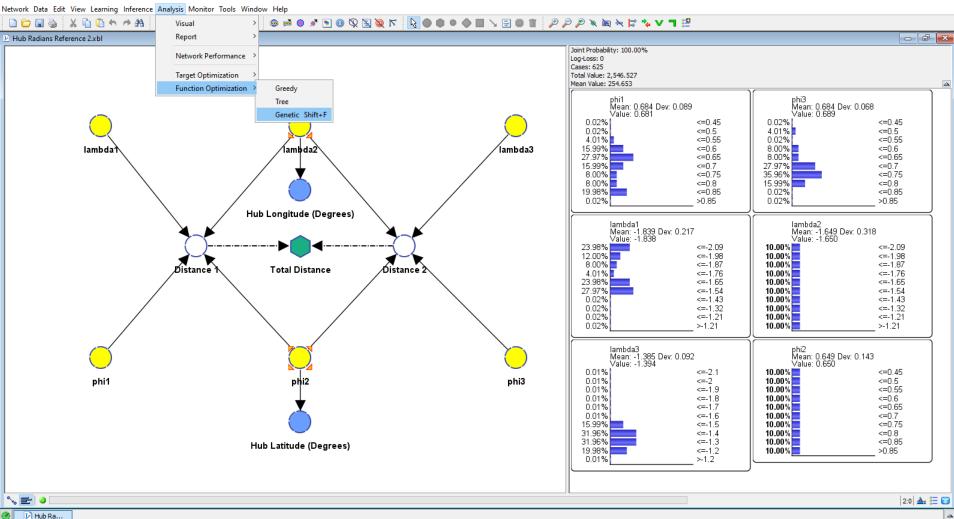


Data


BayesiaLab.com

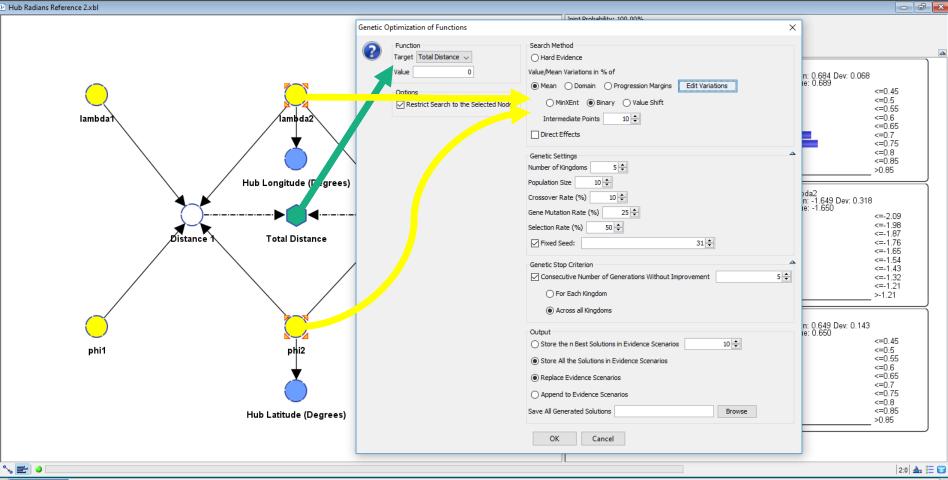

46





Δ

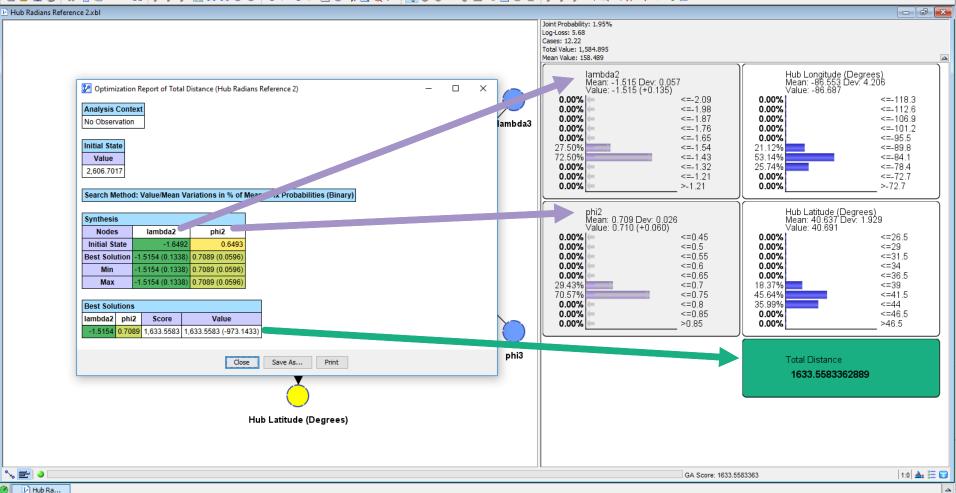
Δ


😰 BayesiaLab - C:\Users\StefanConrady\OneDrive - Bayesia USA\Studies\GIS\3 Hub Location\Hub Radians Reference 2.xbl

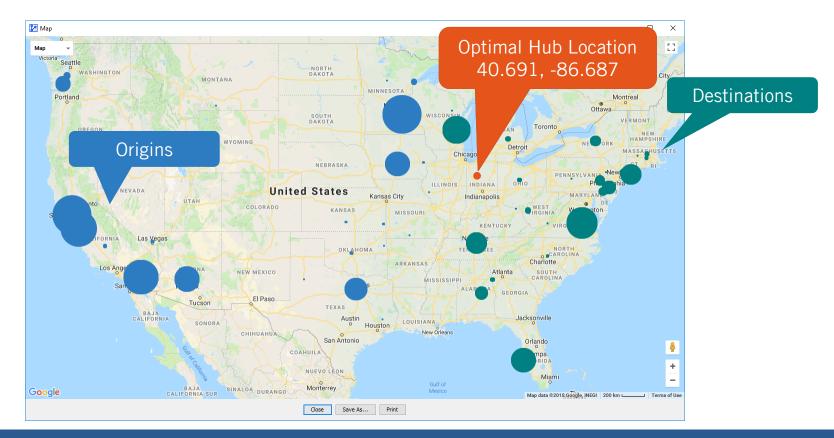
Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

Hub Radians Reference 2.xbl

😥 Hub Ra...



😰 BayesiaLab - C:\Users\StefanConrady\OneDrive - Bayesia USA\Studies\GIS\3 Hub Location\Hub Radians Reference 2.xbI


Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

□ 🗁 🖬 🖕 X 🗅 🛍 ← 여 ෯ 🖉 위 위 🖽 🗰 🙂 🖉 🔍 🔍 🗨 🗨 🖉 🖉 🔍 🔍 🔍 🗑 🖉 N 🔤 👘 🕇 🖉 위 위 🖄 🗮 🖓 위 N 🖄 🗮 🗮 🖓 N 🖿 🚝

- 🗆 ×

Hub Location Problem

BAYESIALAB

In Conclusion...

Upcoming Events

Webinars & Seminars:

- June1 Webinar: Health Outcomes Research
- June 19 Seminar in Chicago: Knowledge Discovery in Financial Data

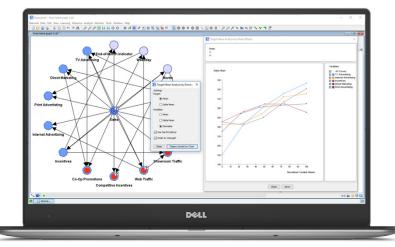
Register here: bayesia.com/events

BayesiaLab Courses Around the World in 2018

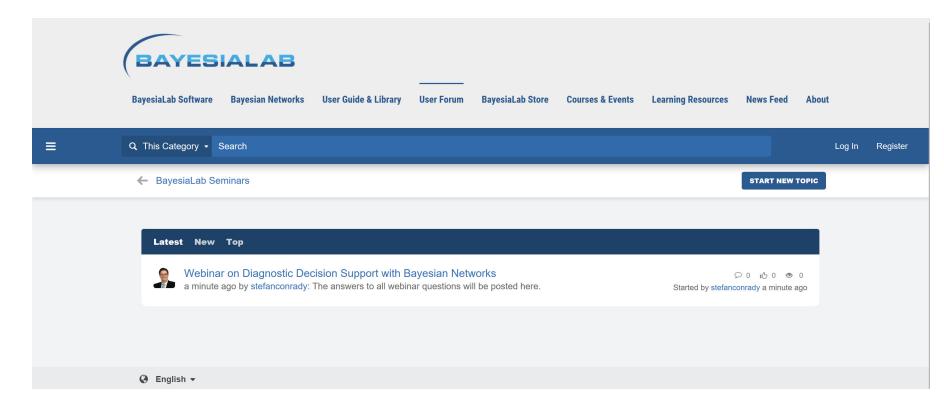
- June 26–28
 Boston, MA
- July 23–25
 San Francisco, CA
- August 29–31
 London, UK
- September 26–28
 New Delhi, India

Learn More & Register: bayesia.com/events

- October 29–31
 Chicago, IL
- December 4–6 New York, NY


stefan.conrady@bayesia.us

BayesiaLab Trial


Try BayesiaLab Today!

- Download Demo Version:
 <u>www.bayesialab.com/trial-download</u>
- Apply for Unrestricted Evaluation Version: <u>www.bayesialab.com/evaluation</u>

User Forum: bayesia.com/community

6th Annual BayesiaLab Conference in Chicago November 1–2, 2018

Thank You!

stefan.conrady@bayesia.us

BayesianNetwork

linkedin.com/in/stefanconrady

facebook.com/bayesia