

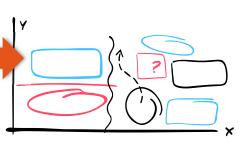
## Intelligence Analysis with Artificial Intelligence and Bayesian Networks



## Helo my name is

David

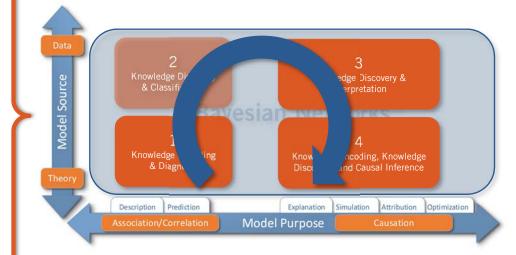
Aebischer




## Hello my name is



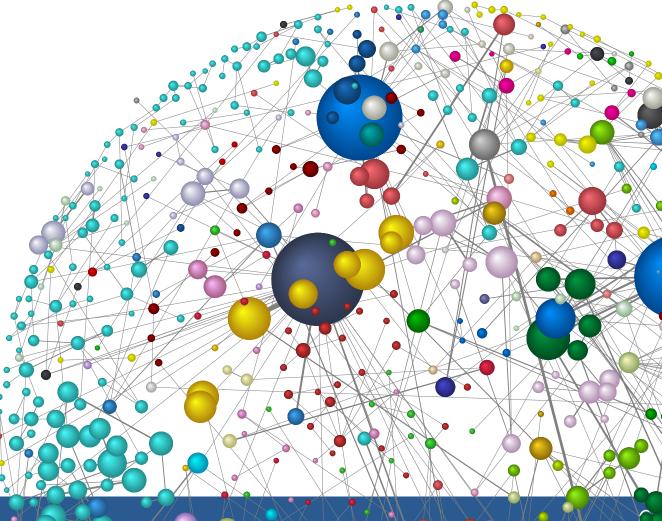



- Introduction: Our Company and Technology
- Motivations:
  - The Promise, the Peril, and the Limitations of Artificial Intelligence
  - Human Cognitive Limitations & Biases in Reasoning
- Objective:
  - Human-Machine Teaming
  - Practical Artificial Intelligence for Here & Now
- Dimensions of Reasoning
- Introducing Bayesian Networks as a Reasoning Framework





#### **Examples**


- Knowledge Encoding & Reasoning
  - Friend or Foe?
  - Where is my Bag?
  - Monty Hall or Choose Your Battles Wisely!
  - Formal Knowledge Elicitation
- Knowledge Discovery
  - Interpretation
  - Anomaly Detection
- Causal Inference
  - Simpson's Paradox





Co-founded in 2001 by Dr. Lionel Jouffe & Dr. Paul Munteanu





### **Disambiguation**



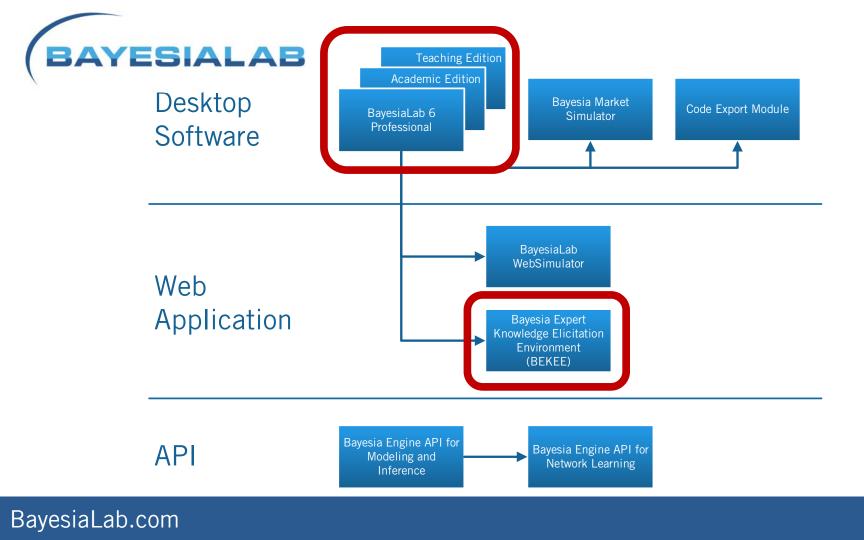


#### **Our Product**

#### **The Paradigm**

#### **BAYESIAN NETWORKS\***

Judea Pearl


Cognitive Systems Laboratory Computer Science Department University of California, Los Angeles, CA 90024 *judea@cs.ucla.edu* 

Bayesian networks were developed in the late 1970's to model distributed processing in reading comprehension, where both semantical expectations and perceptual evidence must be combined to form a coherent interpretation. The ability to coordinate bi-directional inferences filled a void in expert systems technology of the early 1980's, and Bayesian networks have emerged as a general representation scheme for uncertain knowledge [Pearl, 1988, Heckerman *et al.*, 1995, Jensen, 1996, Castillo *et al.*, 1997].

Bayesian networks are directed acyclic graphs (DACs) in which the nodes represent vari-

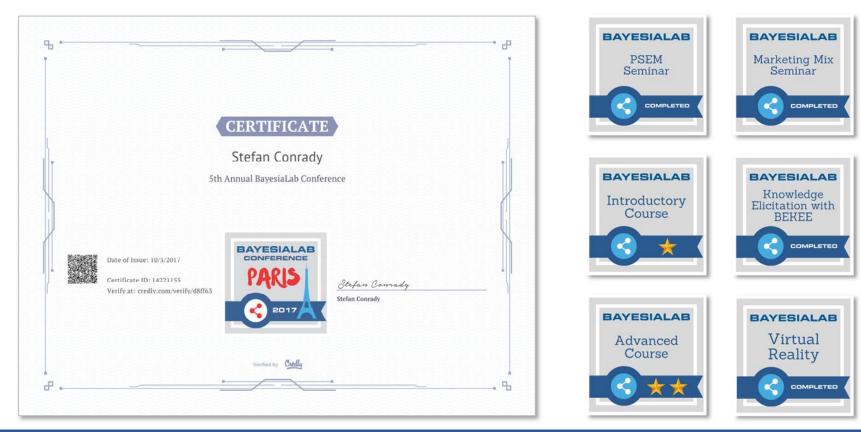








## **Bayesian Networks & BayesiaLab**

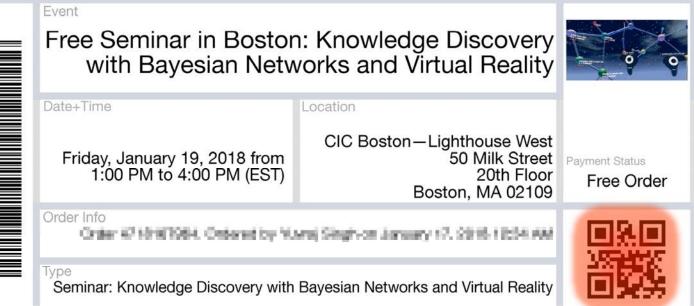

#### **A Practical Introduction for Researchers**

- Free download: <u>www.bayesia.com/book</u>
- Hardcopy available on Amazon: <u>http://amzn.com/0996533303</u>





### **Seminar Credits**




#### stefan.conrady@bayesia.us



#### Please check in!





## Presentation slides will be available (

| 1 *                  | 2 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 *                 | 4 *              | 5             | 6                 | 7                | 8 *   | 9                         | 10 *         | 11 *  | 12 *  | 13 *  | 14    | 15 *                    | 16 *        | 17 *  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|---------------|-------------------|------------------|-------|---------------------------|--------------|-------|-------|-------|-------|-------------------------|-------------|-------|
| <b>&gt;90%</b><br>18 | 19 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - <u>1%</u><br>20 * | 21 *             | Incentives    | 23 *              | 24 *             | 25 *  | 26 *                      | 27           | 28 *  | 29 *  |       | 31 *  | 32 *                    | 33 *        | 34 *  |
| <b>35</b> ★          | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37                  | 38 *             | 39 *          | Non wheth<br>40 * | 41 *             | 42 *  | 43                        | <br>44 *     | 45    | 46 *  | 47 *  | 48 *  | <b>1</b><br>49 <b>*</b> | <b>50</b> * | 51 ×  |
| 52 <b>*</b>          | 53 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1</b><br>54 ★    | <u>↓</u><br>55 * | <b>1</b> 56 ★ | 57 *              | 58 *             | 59 *  | 60 *                      | 61 *         | 62 *  | 63 *  | 64 *  | 65.   | 66 *                    | 67 *        | 68    |
| 69                   | ( <sup>(1)</sup> , <sup></sup> | 71 *                | 72 *             | 73 *          | 74                | <b>○</b><br>75 ★ | 76 *  | <b>1</b> 77 *             | 78 *         | 79    | 80 *  | 81 *  | 82 *  | 83 *                    | 84 *        | 85 *  |
| 86                   | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88                  | 89 *             | 90 *          | 91 *              | 92               | 93 *  | <mark>∦ ⊐∷</mark><br>94 ★ | 95           | 96    | 97    | 98    | 99    | 100                     | 101         | 102 * |
| 103 *                | 104 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 105                 | 106 *            | 107 *         | 108 *             | 109              | 110 * | 111                       | 112 *        | 113 * | 114 * | 115   | 116 * | 117 *                   | 118 *       | 119 * |
| <b>1</b> 20 ★        | 121 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122 *               | 123 *            | 124 *         | 125 *             | 126 *            | 127 * | <b></b><br>128 ★          | <u>129</u> ★ | 130 * | 131 * | 132 * | 133 * | 134 <b>*</b>            | 135 *       | 136 * |
|                      | 138 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 139 *               | 140 *            | 141 *         | 142 *             | 143              | 144   | <br>145 ★                 |              | 147 * | 148   | 149 * | 150   | 151 *                   | 152 *       | 153 * |



## Motivation The Promise, the Peril, and the Limits of Artificial Intelligence

## I WANT TO SAY TWO WORDS TO YOU:

## ARTIFICIAL INTELLIGENCE

"Everything we have of value as human beings, as a civilization, is the result of our intelligence and what AI could do is essentially be a power tool that magnifies human intelligence and gives us the ability to move our civilization forward in all kinds of ways. It might be curing disease, it might be eliminating poverty. I think it certainly should be preventing environmental catastrophes. AI could be instrumental

to all those things."—Stuart Russell, October 2015



### THE DEVELOPMENT OF FULL ARTIFICIAL INTELLIGENCE COULD SPELL THE END OF THE HUMAN RACE. STEPHEN HAWKING, DECEMBER 2014

## Artificial Intelligence — A Threat?





If you're not concerned about AI safety, you should be. Vastly more risk than North Korea.

8:29 PM - Aug 11, 2017

♀ 2,429 1,13,681 ♥ 37,782

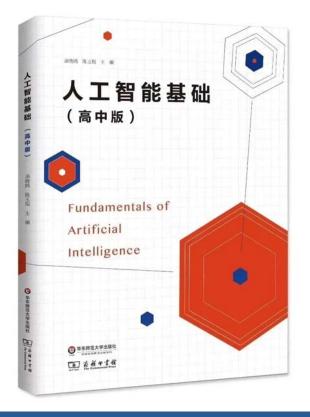
Save 55

### News | Science

The Telegraph

#### ♠ > News > Science

Artificial Intelligence is greater concern than climate change or terrorism, says new head of British Science Association


### (f share) () () ()



#### MORE STORIES

- **1** Anything could now happen on Brexit as Barnier bluff goes wrong
  - 2 Almost \$40bn wiped off cryptocurrency market as Bitcoin rout intensifies
- 3 My daughter was seen by the NHS 47 times but no one realised her condition was fatal
- Sixty Conservative MPs to launch plan to take down Theresa May's Chequers deal this weekend
- 7 Royal Navy warship 'confronted by Chinese military' in South China Sea

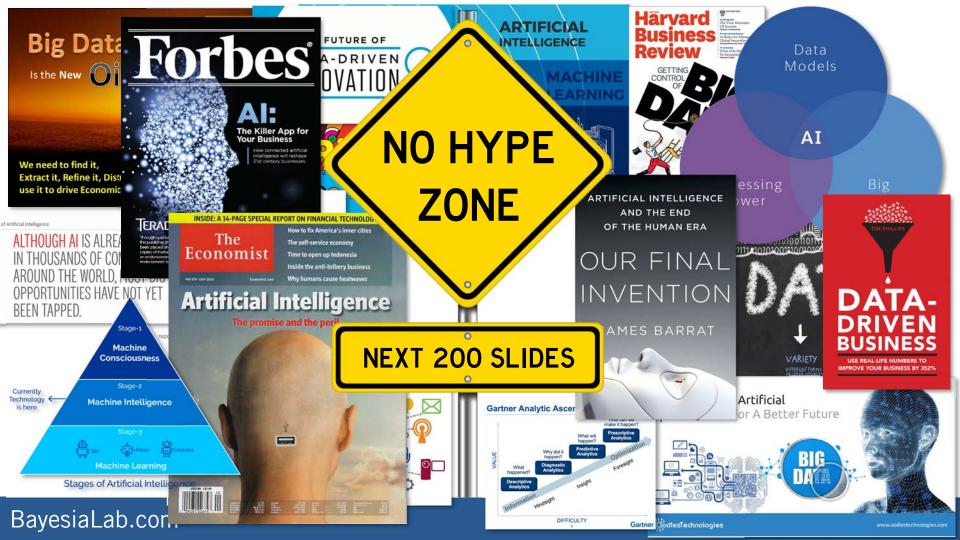
## **Artificial Intelligence an Adversarial Threat?**



# 中国人工智能

# The Washington Post




The Pentagon. (Photo/Charles Dharapak/AP file photo)

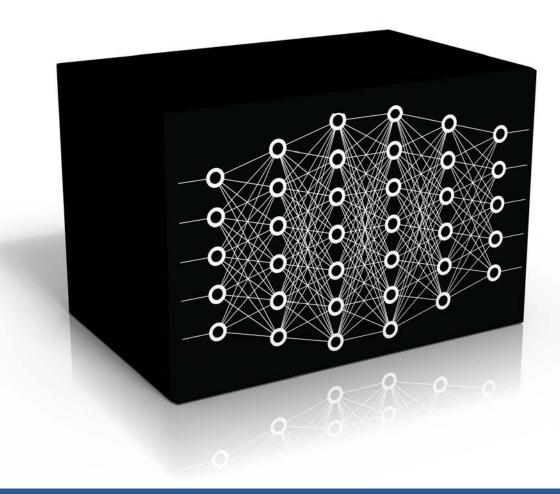
By Drew Harwell September 7 at 10:39 AM

The military's research arm said Friday it will invest up to \$2 billion over the next five years toward new programs advancing artificial intelligence, stepping up both a technological arms race with China and an ideological clash with Silicon Valley over the future of powerful machines.

#### **The Switch**

## Defense Department pledges billions toward artificial intelligence research





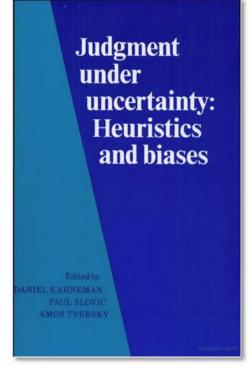

#### DAVID WEINBERGER BACKCHANNEL 04.18.17 08:22 PM

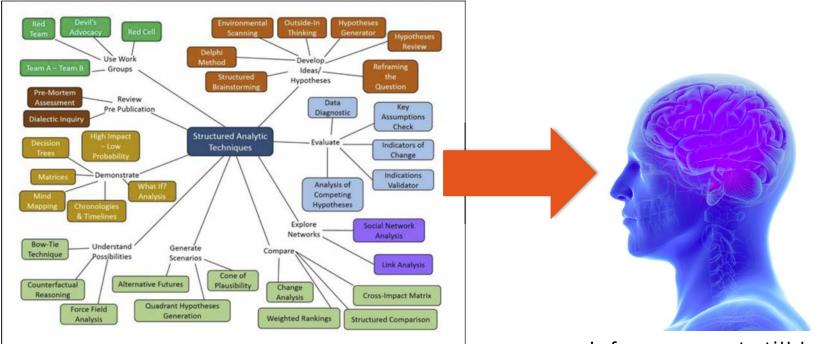
## OUR MACHINES NOW HAVE KNOWLEDGE WE'LL NEVER UNDERSTAND

## WIRED

## ALIEN KNOWLEDGE WHEN MACHINES JUSTIFY KNOWLEDGE

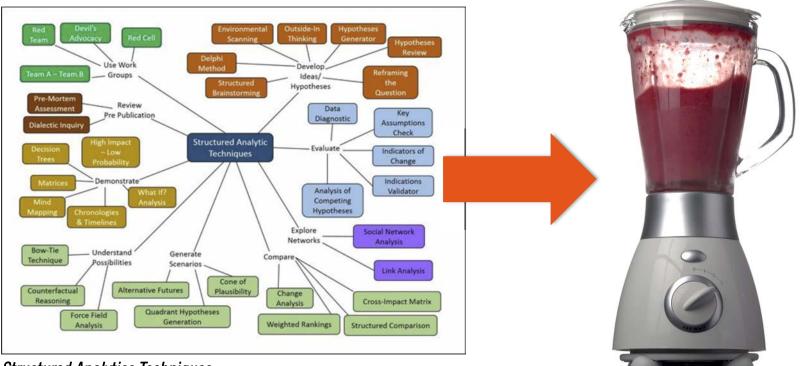



Small Brain





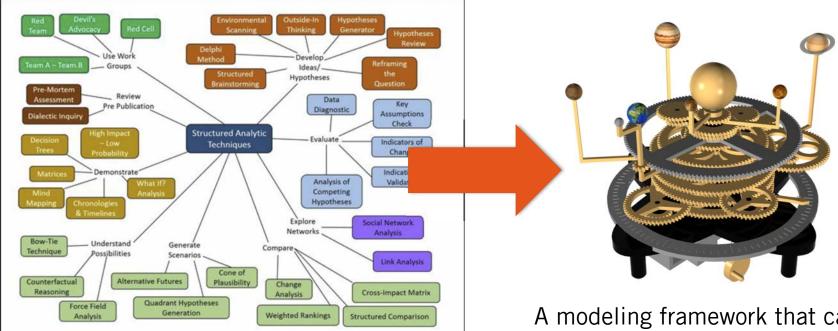

#### **Fundamental Challenges in Human Reasoning**


- Cognitive Biases
- Comprehending High-Dimensional Domains
- Dealing with Uncertainty
- Combining Data and Theory
- Distinguishing Observation and Causation



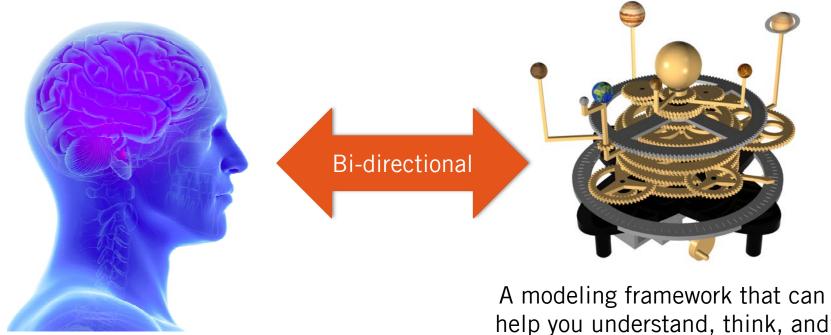


*Structured Analytics Techniques Source: AFH14-133 27 SEPTEMBER 2017 31* 


#### Inference must still happen in the human brain

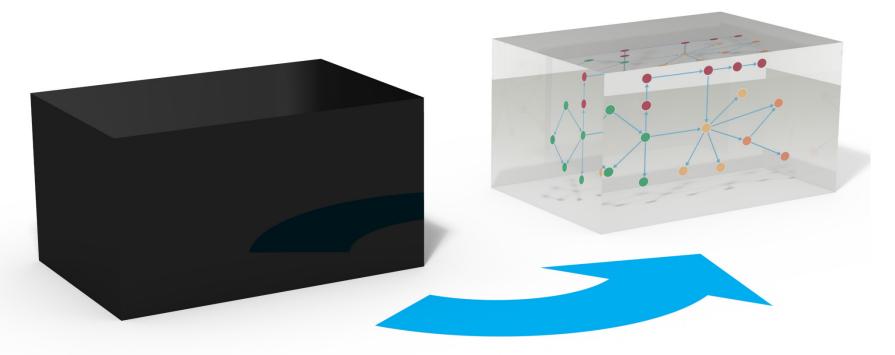


Decision Maker


#### *Structured Analytics Techniques Source: AFH14-133 27 SEPTEMBER 2017 31*

## **Objective: Explicit Inference & Reasoning**




A modeling framework that can help you understand, think, and reason explicitly.

## **Objective: Explicit Inference & Reasoning**



reason explicitly.

## **Objective: Explicit Inference & Reasoning**



## Objective: Human-Machine Teaming for Reasoning



# **Dimensions of Reasoning**

X

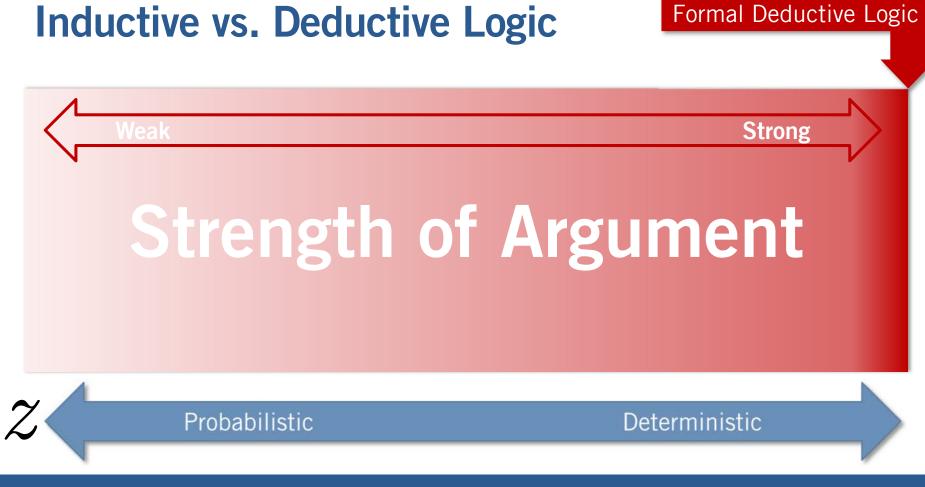
Z

# **Deductive Logic**

#### Aristotle (384-322 BC)

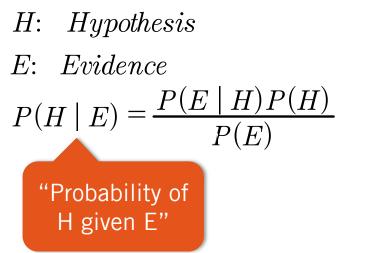





ΑΡΙΣΟΤΕΛΟΥΣ ΑΝΑΛΥΤΙΚΩΝ ΥΣΤΕ ΡΩΝ ΗΤΟΙ ΤΗΣ ΑΡΟΔΕΙΚΤΙΚΗΣ ΠΡΩΤΟΝ.

A E A Dideorne lice usis Theo ma שאסוג לאטטוו דוארא, יא הפטי חט פאטטאר THET WWOEWS Pace Sou de TAP SEW pour in an acon Ain St madama דוועידי לישוגד עלע אמנידסעיל ידם די TOON TEPasvortas. Hair Th augur ixas 5% ( Mand Das TEXNed vous di El Trei Tous Noyous, or TE Ba ou Mortopula injoisie Ta raris. a Moo TE col Soda Teo HUWORD USU W TO ON THE THE SSORTA NICE. OINS DALL μανοντες ώς παι ρα ξωνεντων.οί δε δεικνών τες γοί αθό λε δια Town in rona Secusor Down two mois upercoloumters orpins dra mar paddruar obstvinarorin driven unuar owep's ou mortopios, Dizerde paranov mogrowork . Ta who אי מידו ג' אייי אי אמעראמיטידע אי אי אייארא אייא אייט אנן אייטיאלא. Eusievas Sei med anow Osovon neva acov & prodin ano Phoon a Anger, otis role Firwy, otip di on maind. + de mova Secampun Tion many no Tiosov. & So Mosus 28 Two Exas Son Nov HMIN. EST derweigde ne Wen men TEpov ruceigoune. T den a ma rame avorta The rudow oiovood Turyard or to vo to יפטעאי וסמג, דף out of to Tig of to colo in MIXUX Nico Fire vistor, a maina 29 popos érvierouv. Évicor & morpo rou forevina 94 ois ist, Coudia TO MEODU DE gape NWW Cile Tanood Gon Pri

# **Deductive Logic**


**Limitations of Logic** 

"Classical logic has no explicit mechanism for representing the degree of certainty of premises in an argument, nor the degree of certainty in a conclusion, J. Williamson, Handbook of the Logic of Argument and Inforencial Contractions of the Practical given those premises."



## 2000 Years Later...

#### Bayes' Theorem for Conditional Probabilities





J Bayes.

#### *1763* PHILOSOPHICAL TRANSACTIONS

[ 370 ] quodque folum, certa nitri figna præbere, fed plura concurrere debere, ut de vero nitro producto dubium non relinquatur.

LII. An Effay towards folving a Problem in the Doctrine of Chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S.

Dear Sir,

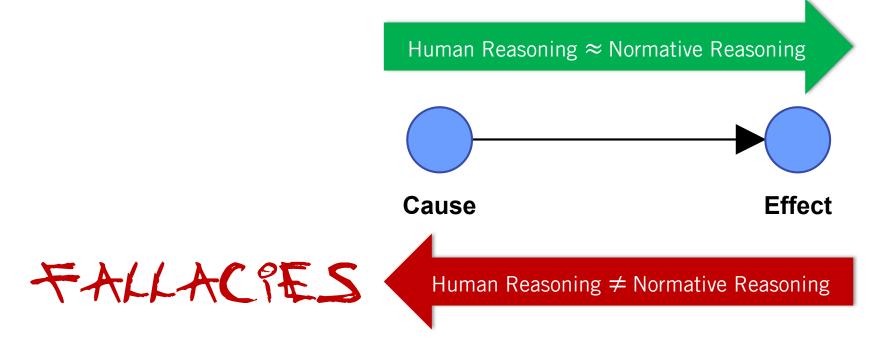
Read Dec. 23, Now fend you an effay which I have 1763: found among the papers of our deceafed friend Mr. Bayes, and which, in my opinion, has great merit, and well deferves to be preferved. Experimental philosophy, you will find, is nearly interefted in the fubject of it; and on this account there feems to be particular reason for thinking that a communication of it to the Royal Society cannot be improper.

Proper. He had, you know, the honour of being a member of that illuftrious Society, and was much efteemed by many in it as a very able mathematician. In an introduction which he has writ to this Effay, he fays, that his defign at firft in thinking on the fubject of it was, to find out a method by which we might judge concerning the probability that an event has to happen, in given circumftances, upon fuppolition that we know nothing concerning it but that, under the fame circum-

#### stefan.conrady@bayesia.us

# **Probabilistic Reasoning**

#### Mathematical Formulation of Probabilistic Reasoning

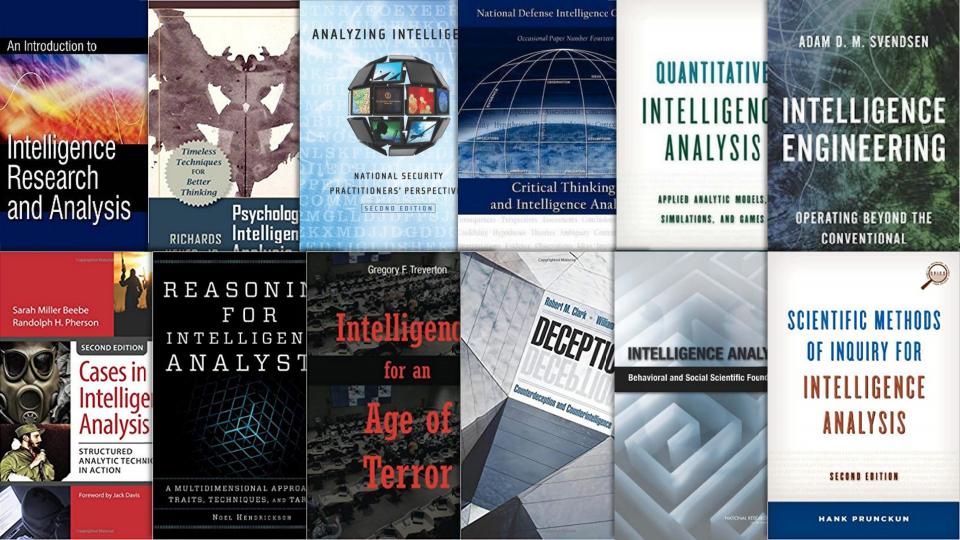

"Bayesian inference is important because it provides a normative and general-purpose procedure for reasoning under uncertainty."

Inductive Reasoning: Experimental, Developmental, and Computational Approaches, edited by Aidan Feeney and Evan Hen

Approaches, edited by Aidan Feeney and Evan Held

# Why is this so important?

Human Cognitive Limitations and Biases Under Uncertainty




# 250 Years Later...

• "...despite the mathematization of probability in the Enlightenment, mathematical probability theory remains, to this very day, entirely unused in criminal courtrooms, when evaluating the 'probability' of the guilt of a suspected criminal." James Franklin, The Science of Conjecture: *Evidence and Probability before Pascal,* 2001 The Johns Hopkins Press

#### THE DOCTRINE OF HANCES: OR. A METHOD of Calculating the Probabilities of Events in PLAY. THE THIRD EDITION. Fuller, Clearer, and more Correct than the Former. By A. DE MOIVRE, Fellow of the ROYAL SOCIETY, and Member of the ROYAL ACADEMIES OF SCIENCES of Berlin and Paris. CCADEMI DELLE SCIENZ LONDON: Printed for A. MILLAR, in the Strand.

MDCCLVI.



DECLASSIFIED Authority NND 947003

NTELLIGENCE

17- 30-3

#### APPROVED FOR RELEASE 1934 CIA HISTORICAL REVIEW PROGRAM

TITLE: Bayes' Theorem For Intelligence Analysis

AUTHOR: Jack Zlotnick

· .....

VOLUME: 16 ISSUE: Spring YEAR: 1972

## **Bayesian Inference in the Intelligence Community**

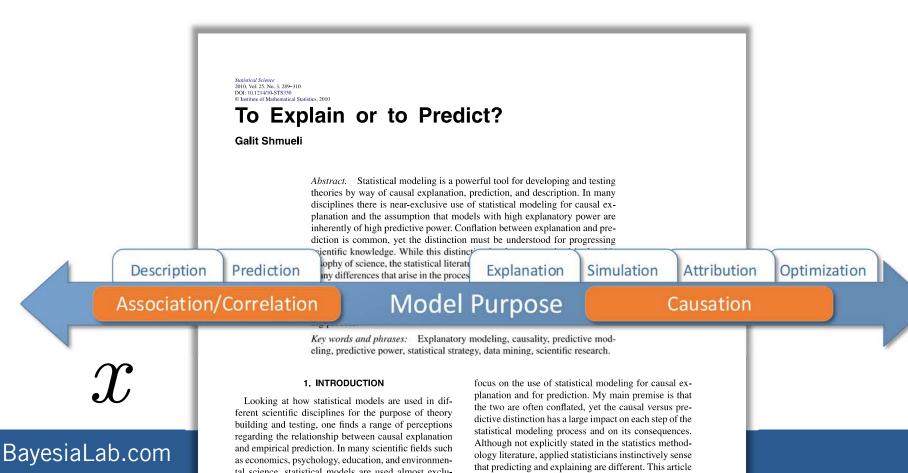
"Due to the highly mathematical nature of Bayesian Decision Analysis, many users will feel uneasy trusting the resulting assessments."

Captain David Lawrence Graves, USAF, Bayesian Analysis Methods for Threa Prediction MSSI Thesis (Washington: Defense Intelligence College, July 1993)

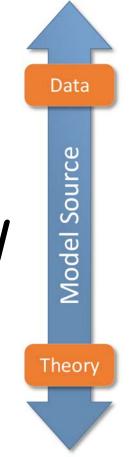
# **Dimensions of Reasoning**

That's our first dimension!

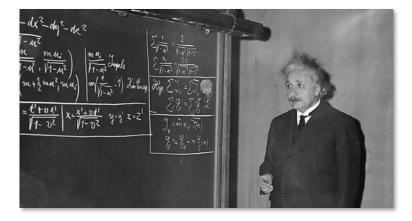



Probabilistic

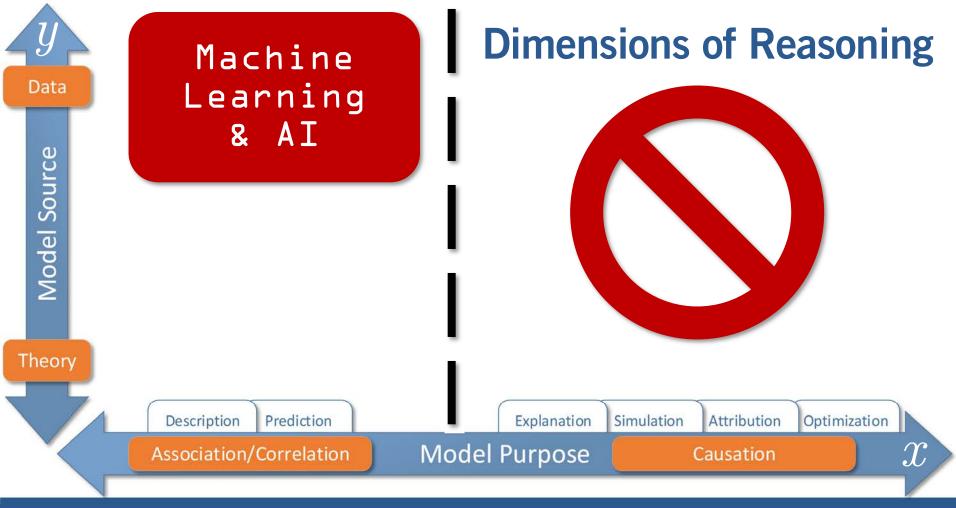
Deterministic

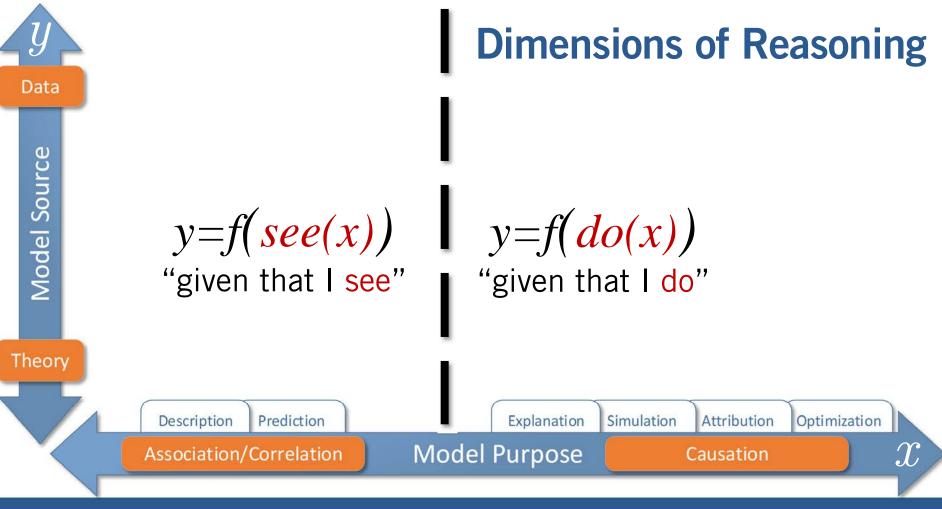

BayesiaLab.com

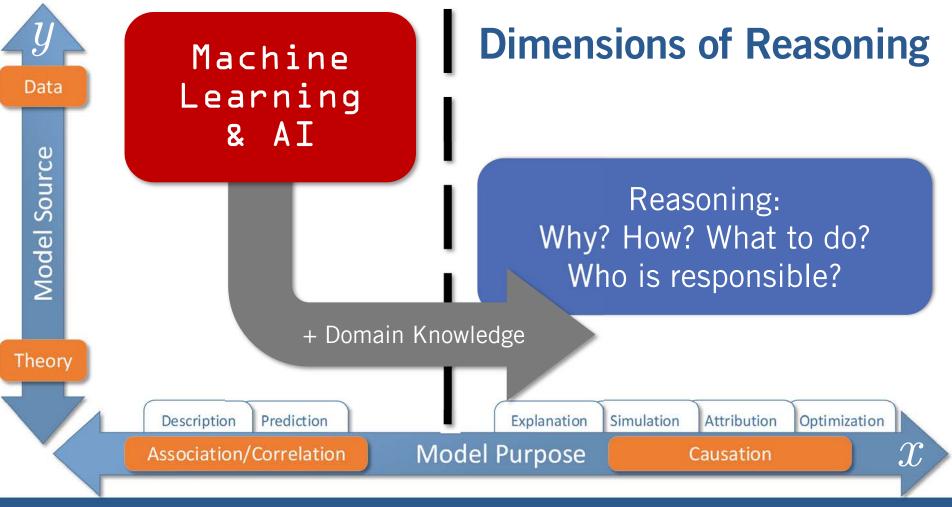
-ogic Applies


# **Dimensions of Reasoning**



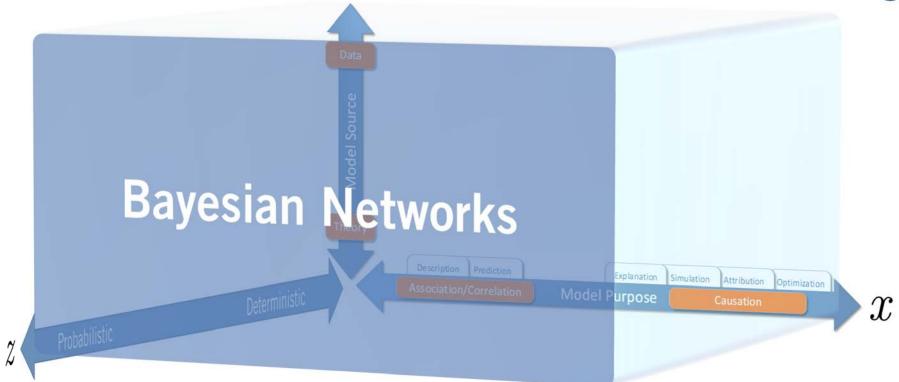

# Dimensions of Reasoning



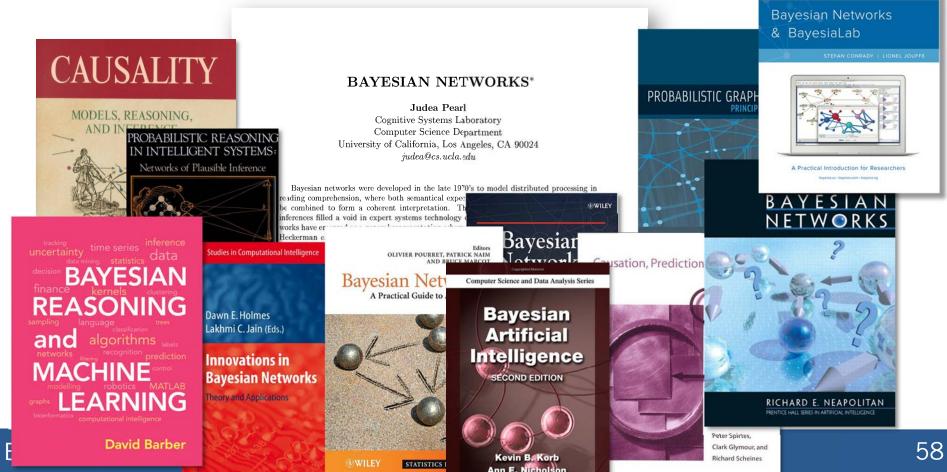





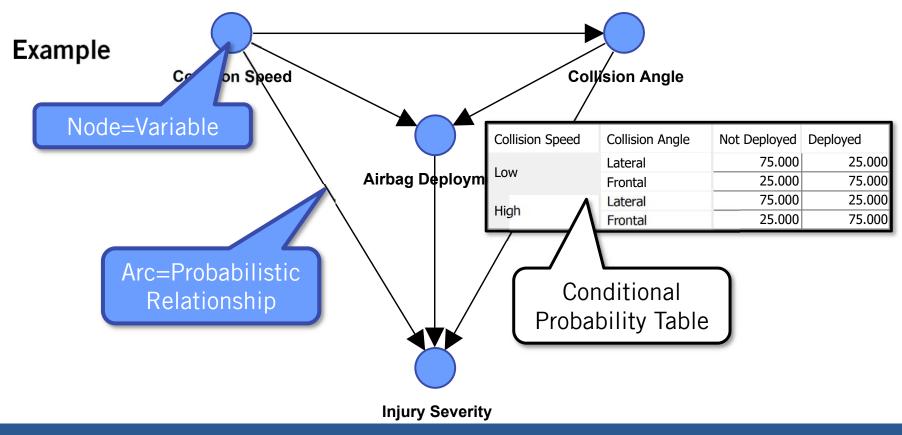




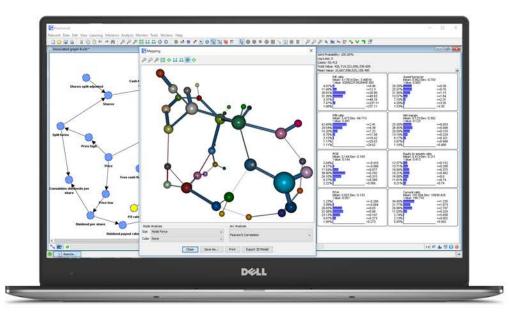

| Data<br>Data<br>Model Source<br>Theory | Machine<br>Learning<br>& AI<br>Bayesian Networks:<br>Why? How? What to do?<br>Who is responsible? |
|----------------------------------------|---------------------------------------------------------------------------------------------------|
|                                        |                                                                                                   |
|                                        | Description Prediction Explanation Simulation Attribution Optimization                            |
|                                        | Association/Correlation Model Purpose Causation $\mathcal{X}$                                     |
|                                        |                                                                                                   |


## **Dimensions of Reasoning**



# The New Paradigm: Bayesian Networks GAVESIA








## Mathematical Formalism → Research Software







#### A desktop software for:

- encoding
- learning
- editing
- performing inference
- analyzing
- simulating
- optimizing
- with Bayesian networks.

# Artificial Intelligence?



# **Implementation Example**



#### **INTERFACES**

Vol. 47, No. 1, January–February 2017, pp. 1–21 ISSN 0092-2102 (print), ISSN 1526-551X (online)



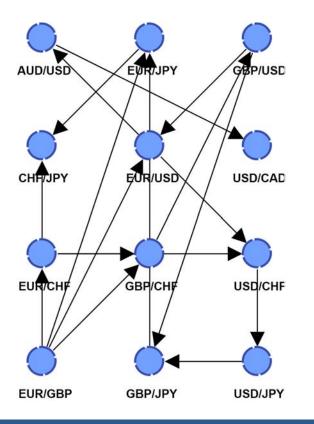
THE FRANZ EDELMAN AWARD Achievement in Operations Research

#### **Bayesian Networks for Combat Equipment Diagnostics**

David Aebischer,<sup>a</sup> John Vatterott, Jr.,<sup>a</sup> Michael Grimes,<sup>a</sup> Andrew Vatterott,<sup>a</sup> Roderick Jordan,<sup>a</sup> Carlo Reinoso,<sup>a</sup> Bradford Alex Baker,<sup>a</sup> William D. Aldrich,<sup>a</sup> Luis Reinoso,<sup>a</sup> Rodolfo Villalba,<sup>a</sup> Michael Johnson,<sup>a</sup> Christopher Myers,<sup>a</sup> Stefan Conrady,<sup>a</sup> Joseph A. Tatman,<sup>a</sup> Suzanne M. Mahoney,<sup>a</sup> Darrin L. Whaley,<sup>a</sup> Amanda B. Hepler<sup>a</sup>

<sup>a</sup> U.S. Army Communications Electronics Command, Aberdeen, Maryland 21001

**Contact:** david.a.aebischer.civ@mail.mil (DA), johnjr@stltrades.com (JV), mgrimes@vettechgrp.com (MG), andrewv@stltrades.com (AV), roderickj@stltrades.com (RJ), carlor@stltrades.com (CR), abbaker@vettechgrp.com (BAB), billa@stltrades.com (WDA), luisr@stltrades.com (LR), rudyv@stltrades.com (RV), michaelj@stltrades.com (MJ), chrism@stltrades.com (CM), stefan.conrady@bayesia.us (SC), jatatman@innovativedecisions.com (JAT), smmahoney@innovativedecisions.com (SMM), dlwhaley@innovativedecisions.com (DLW), abhepler@innovativedecisions.com (ABH)

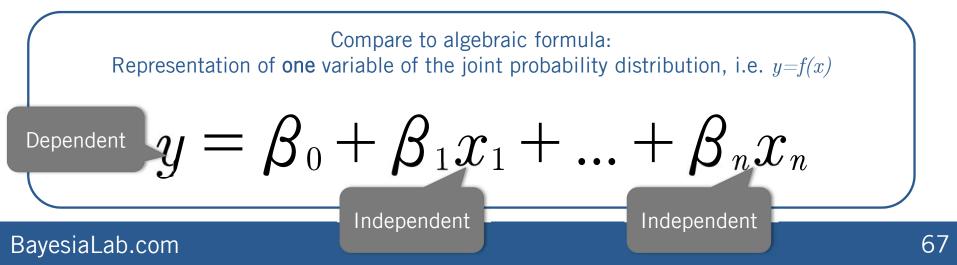

https://doi.org/10.1287/inte.2016.0883

Copyright: @ 2017 INFORMS

**Abstract.** The lives of U.S. soldiers in combat depend on complex weapon systems and advanced technologies. In combat conditions, the resources available to support the operation and maintenance of these systems are minimal. Following the failure of a critical system, technical support personnel may take days to arrive via helicopter or ground

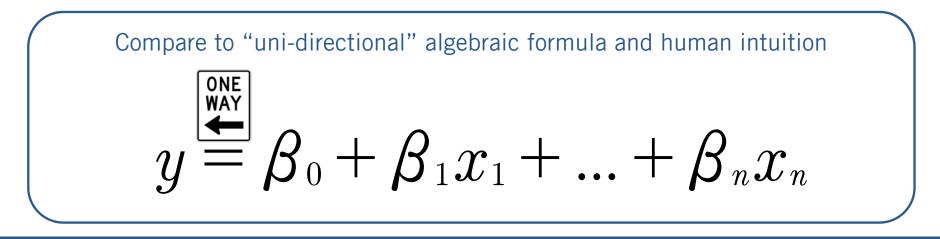


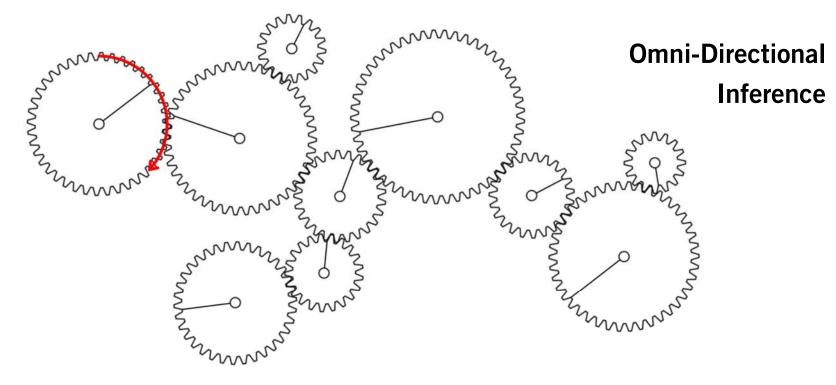
# Conceptual Advantages of Bayesian Networks for Reasoning

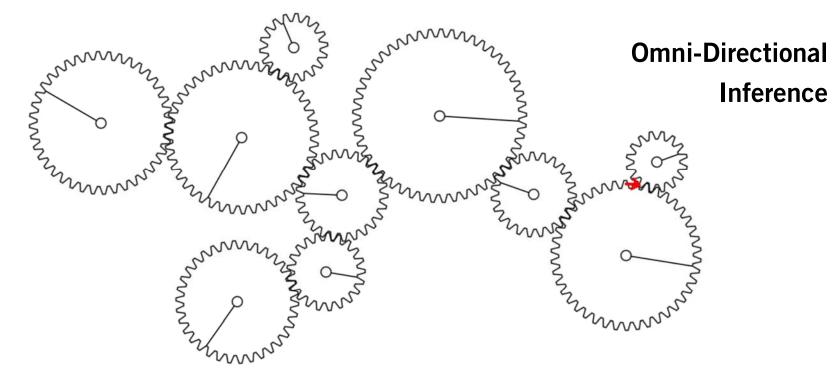



#### **Key Properties**

- Compact representation of the Joint Probability Distribution
- No distinction between dependent and independent variables
- Omni-directional Inference
- Nonparametric
- Probabilistic
- Causal


#### **Key Properties of Bayesian Networks**


- No distinction between dependent and independent variables.
- Numerical and categorical variables are treated identically.
- Nonparametric.



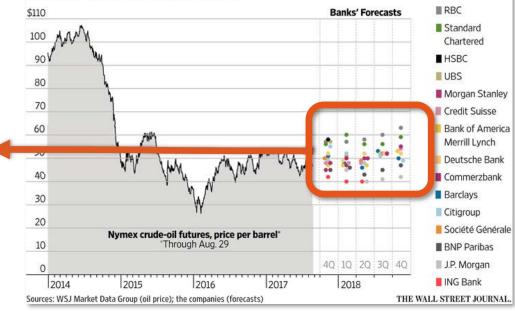

#### **Key Properties of Bayesian Networks**

Omni-directional Inference, i.e. evaluation is always performed in all directions.



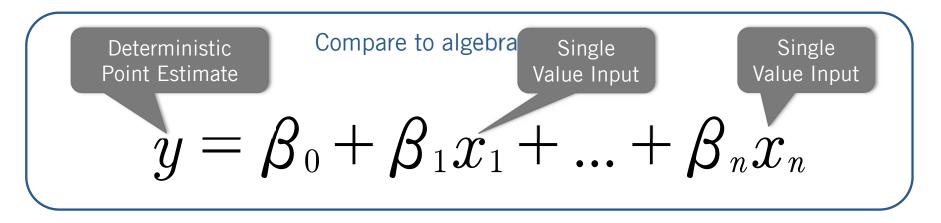





# **Bayesian Networks**

#### **Key Properties**

- Bayesian networks are inherently probabilistic.
- Evidence and inference are represented as distributions.
- Inference can be performed with partial evidence.


#### Looking Ahead at Oil Prices

Where investment banks in August's survey see the price of U.S. crude-oil futures in the next few quarters



#### **Key Properties of Bayesian Networks**

- Bayesian networks are inherently probabilistic.
- Evidence and inference are represented by distributions.
- Inference can be performed with partial evidence.



## **Bayesian Networks**

### **Key Properties of Bayesian Networks**

- Bayesian networks can encode causal direction, algebra cannot.
- Example: Newton's Second Law of Motion

$$F = m \cdot a$$

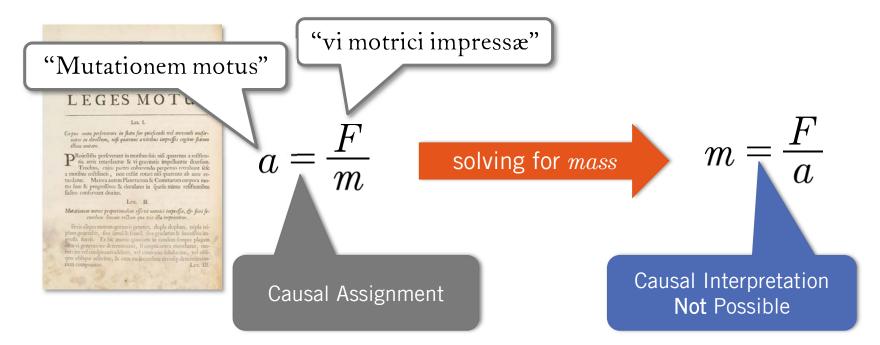
[ 12 ]

### A X I O M A T A SIVE L E G E S M O T U S

Lex. I.

Corpus omne perfeverare in flatu fuo quiefcendi vel movendi uniformiter in direstum, nifi quatenus a viribus impreffis cogitur flatum illum mutare.

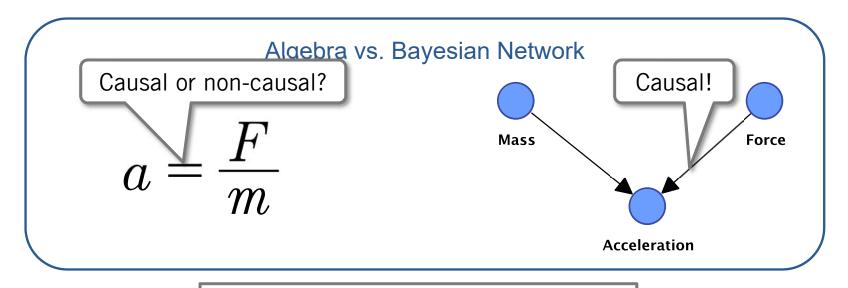
Projectilia perfeverant in motibus fuis nifi quatenus a refiftentia acris retardantur & vi gravitatis impelluntur deorfium. Trochus, cujus partes coharendo perperuo retrahunt fefe a motibus recilineis, non ceffàr totari nifi quatenus ab aere retardatur. Majora autem Planetarum & Cometarum corpora motus fuos & progreflivos & circulares in fpatiis minus refiftentibus factos confervant diutius.


Lex. II.

Mutationem motus proportionalem effe vi motrici impreffæ, & fieri fecundum lineam restam qua vis illa imprimitur.

Si visaliqua motum quenvis generet, dupla duplum, tripla triplum generabit, five fimul & femel, five gradatim & fucceffive imprefla fuerit. Et hic motus quoniam in candem femper plagam cum vi generatrice determinatur, fi corpus antea movebatur, motui ejus vel confpiranti additur, vel contrario fubducitur, vel obliquo oblique adjicitur, & cum eo fecundum utriufq; determinationem componitur. Lex. III.

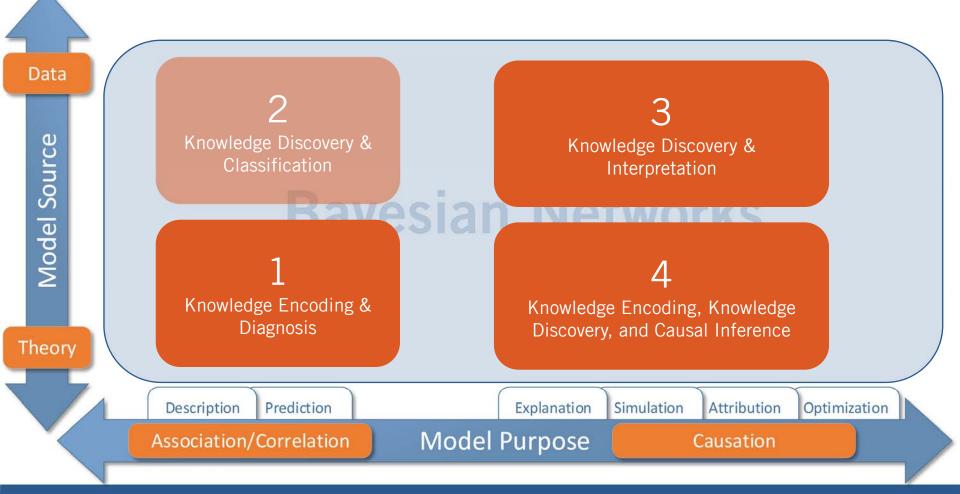
## **The New Paradigm: Bayesian Networks**

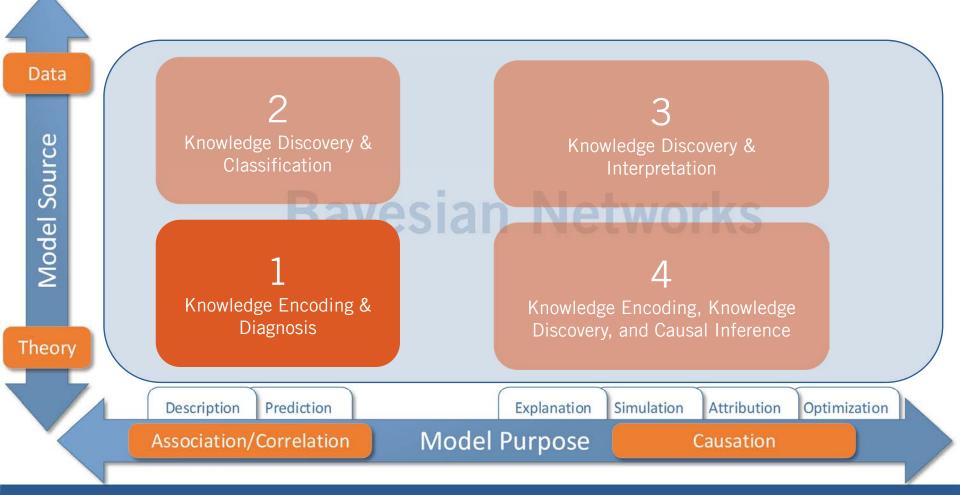

### Limitations of Algebra: Newton's Second Law of Motion



## **The New Paradigm: Bayesian Networks**

### **Key Properties of Bayesian Networks**


• Bayesian networks can formally encode a causal direction\*, algebra cannot.




\*Applies to manually encoded networks



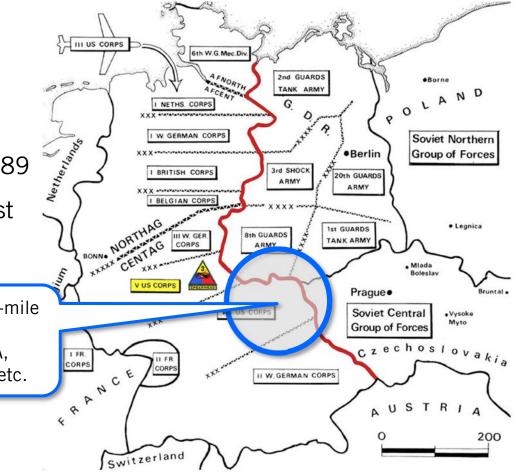
## Examples Bayesian Networks in Practice

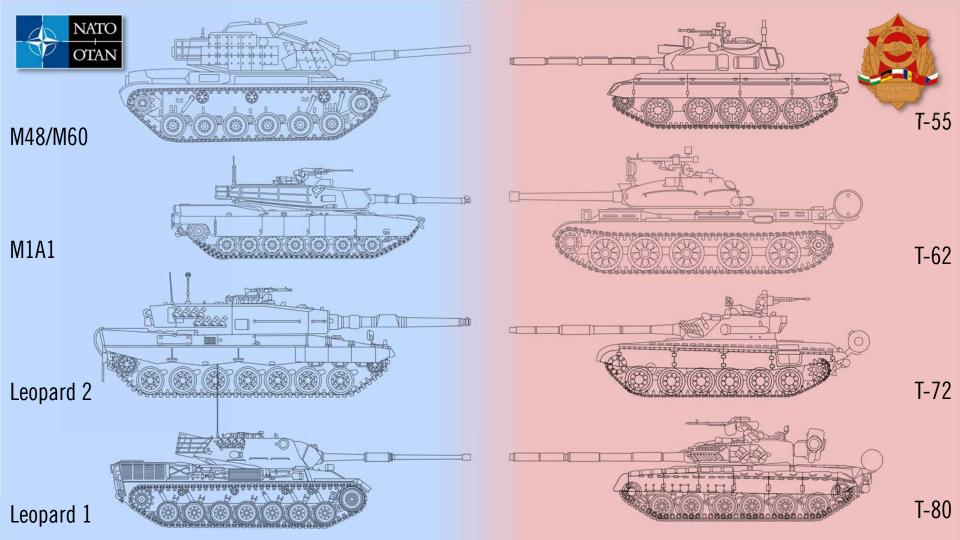






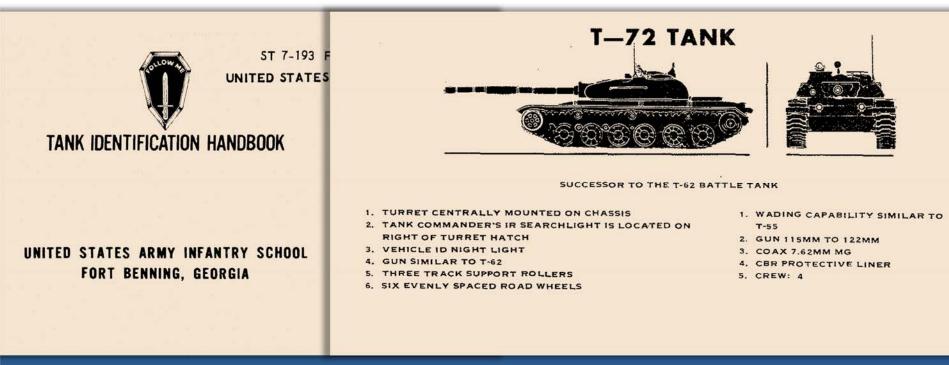



## Friend or Foe?


### **A Counterfactual Scenario:**

- Central Europe, Summer of 1989
- Warsaw Pact forces invade West Germany

Nations in Combat within a 60-mile Radius: West Germany, East Germany, France, Canada, USA, Czechoslovakia, Soviet Union, etc.


Map: Strategic Geography: NATO, the Warsaw Pact, and the Superpowers; by Hugh Faringdon; 1989.





## Friend or Foe?

### Tank Identification Handbook, 1982





## "Fratricide is widely cited to account for between 2% to 20% of Blue (friendly force) casualties." Robert Rasmussen, The Wrong Target Joint Forces Staff College, 2007

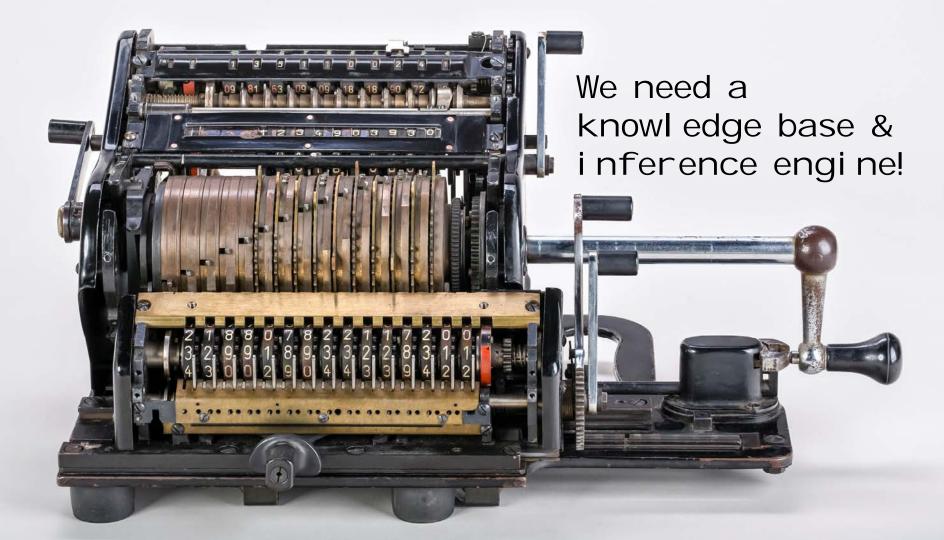
## Friend or Foe? **Objective** Decision support tool for the differential identification of battle tanks: • M1A1 M48/60 • Leopard 1/2 T-55/62/72/80

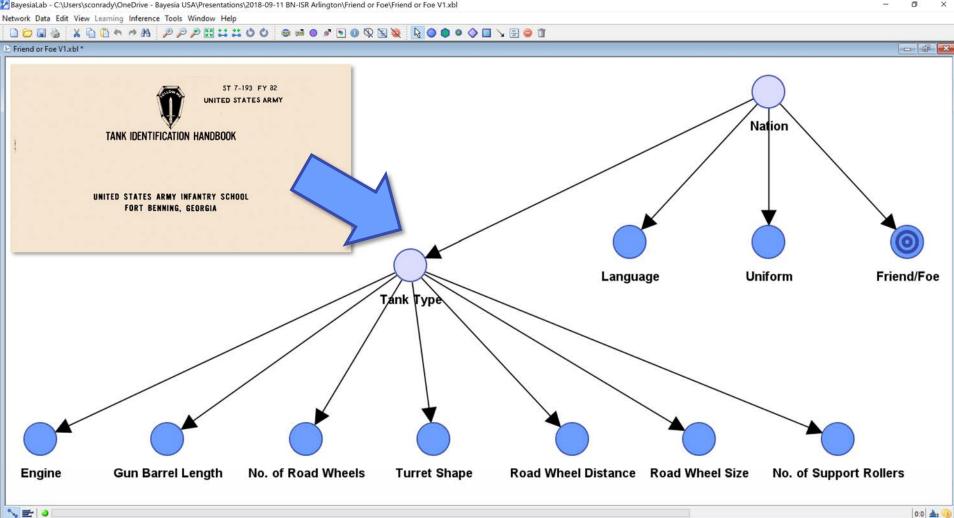
### BayesiaLab.com

### All numerical values provided in this example are fictional.

87

### BayesiaLab.com


•


## **Friend or Foe?**

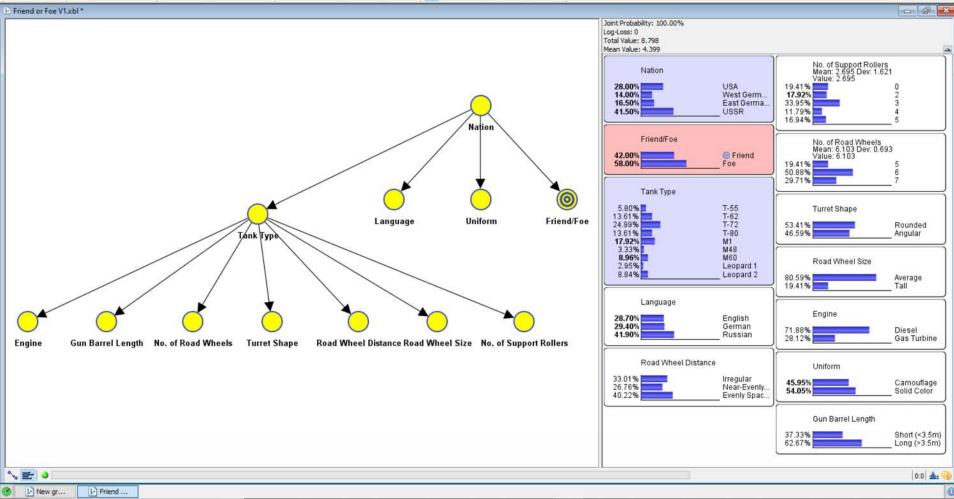
### This is an inference task!

- P(M1A1 | Turret Shape, Barrel Length, Wheels, Wheel Distance, etc.)=?
- P(T-80 | Turret Shape, Barrel Length, Wheels, Wheel Distance, etc.)=?
  - Probability of Shape, Barrel Length, Wheels, Wheel Distance, etc.)=?
- P(M60 | Turret Shape, Barrel Length, Wheels, Wheel Distance, etc.)=? given








🙆 🕑 New gr...

Friend ...

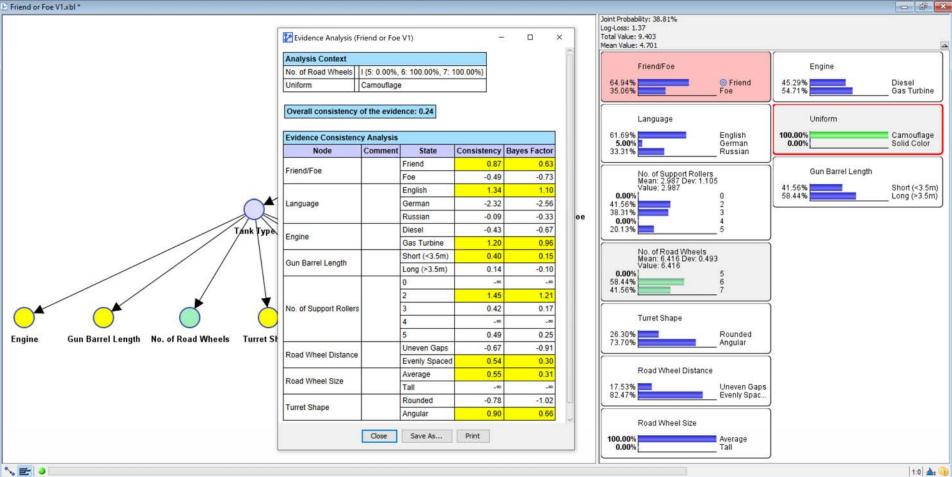
🔀 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Presentations\2018-09-11 BN-ISR Arlington\Friend or Foe\Friend or Foe V1.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

### 



🔀 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Presentations\2018-09-11 BN-ISR Arlington\Friend or Foe\Friend or Foe V1.xbl


Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

### 

#### Friend or Foe V1.xbl\*

New gr...

Friend ....

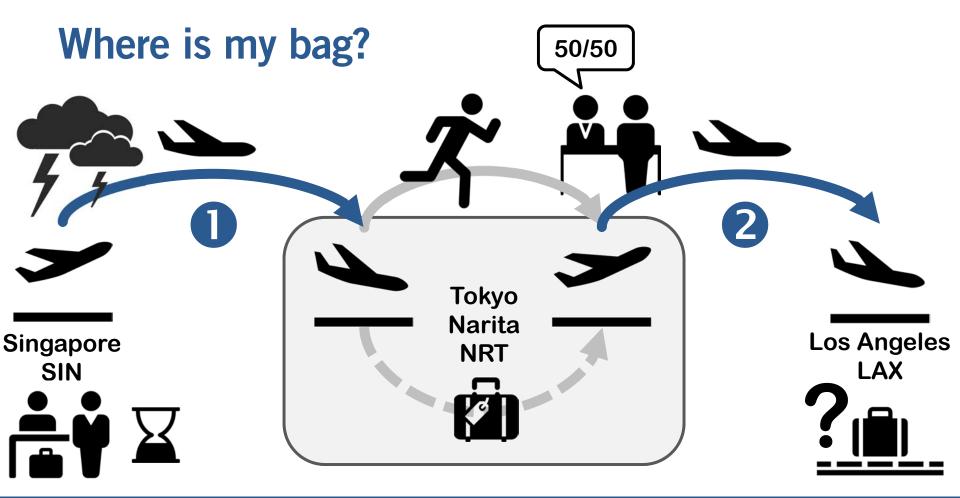


o.  $\times$ 

## Knowledge Base & Inference Engine

33

Knowledge Modeling & Reasoning Under Uncertainty


Reggege Claim

See Chapter 4

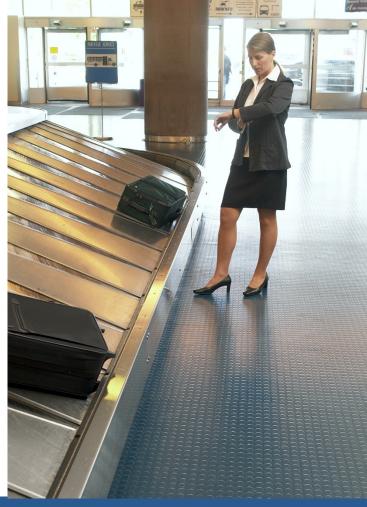
## **Example: Where is my bag?**

### Travel Route: Singapore (SIN) → Tokyo/Narita (NRT) → Los Angeles (LAX)





### Scenario 1


- Luggage delivery starts onto the carousel.
- After 5 minutes, I still do not see my bag.
- What is the probability that I will still get my bag?





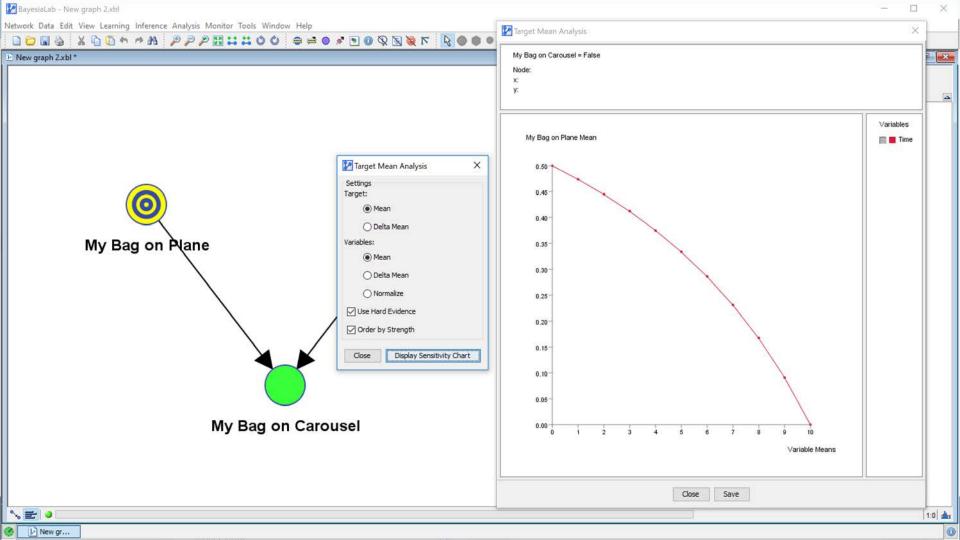
### **Proposed Workflow**

- Encode the available albeit very limited — knowledge into a Bayesian network.
- Use BayesiaLab to perform probabilistic inference given our observations.



| 🔀 BayesiaLab - | New | graph | 2.xbl |  |
|----------------|-----|-------|-------|--|
|----------------|-----|-------|-------|--|

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help


4

### - 6 × ▶ New graph 2.xbl \* Joint Probability: 100.00% Log-Loss: 0 Total Value: 5.000 Mean Value: 5.000 My Bag on Plane 50.00% False 50.00% True My Bag on Carousel 75.00% False My Bag on Plane Time 25.00% True Time Mean: 5.000 Dev: 3.162 Value: 5.000 9.09% 9.09% 9.09% 9.09% 3 9.09% 9.09% 5 9.09% 6 My Bag on Carousel 9.09% 9.09% 8 9 9.09% 9.09% 10 % E 0 0:0 🤗 🛛 🕑 New gr...

🔀 BayesiaLab - New graph 2.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

### New graph 2.xbl \* - 6 × Joint Probability: 6.82% Log-Loss: 3.87 Total Value: 5.000 Mean Value: 5.000 My Bag on Plane 66.67% False 33.33% True My Bag on Carousel 100.00% False My Bag on Plane Time 0.00% True Time Mean: 5.000 Dev: 0.000 Value: 5.000 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 5 0.00% 6 My Bag on Carousel 0.00% 0.00% 8 9 0.00% 10 0.00% % E 0 0:0 🤗 🛛 🕑 New gr...



### **Results from Webinar Poll**

• Only 45% of the participants arrived at the correct answer.




### More important questions:

- Will the patient ultimately respond to the current treatment?
- Should we continue a search and rescue effort?
- Should we still follow the original business strategy, i.e. "hold the course"?


### **Key Points**

- Encoding of knowledge
- Reasoning under uncertainty
- Reasoning
  - from cause to effect (simulation)
  - from effect to cause (diagnosis)
- Inter-causal reasoning



Learn more about this example...

• pp. 118-119





# Where is the Artificial Intelligence here?

# Performing inference that's intractable for humans!

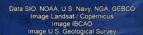


## Coffee Break



555

D


## The Monty Hall Puzzle



### **Mission**

#### **Hypothetical Mission Assignment**

- You are tasked with to conduct a raid to destroy a secret aircraft prototype on enemy territory.
- This aircraft has been traced to a remote military air base and is presumed to be located in one of three separate underground hangars inside a mountain on this facility.
- As a result, you have a one-in-three chance of hitting your target with your first strike.



The second

### Google Earth




### **Mission**

### **Expected Conditions**

- Each hangar entrance is guarded by infantry soldiers.
- Furthermore, the base has two infantry fighting vehicles, which can be dispatched to the hangars within minutes.








### **Mission**

#### **Mission Progress**

- Your raid and your approach to hangar #2 is detected, and two infantry fighting vehicles are immediately positioned as a defense in front of hangars #1 and #2.
- Hangar #3 remains unprotected, thus revealing that this hangar does not contain the target.
- Since the target can only be in hanger #1 or #2, one of the hangars is the true target while the other one is merely a decoy.







## **Choose Your Battle Wisely!**

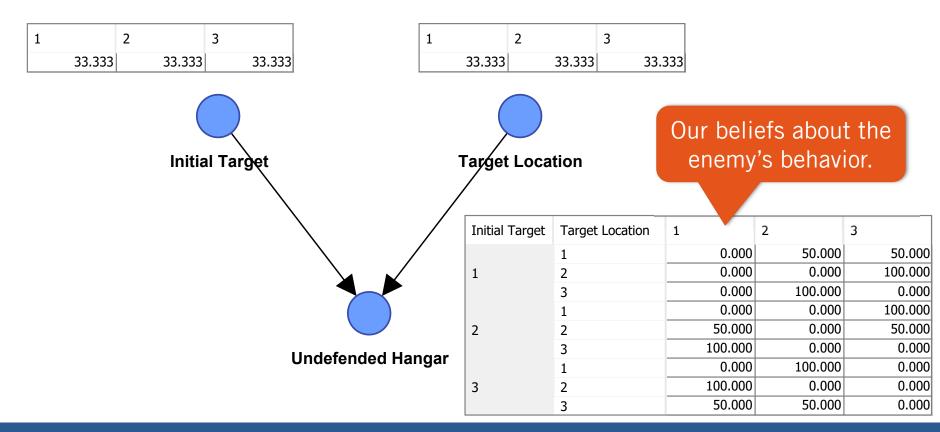
#### **Mission Status**

- You have enough time and firepower to overpower the enemy forces and carry out your mission at either one of the two hangars, but not at both.
- So, you have only one shot at completing your task!

### **Decision Point**

- Do you proceed with your original objective of attacking hangar #2?
- Or, do you change your original plan to go after hangar #1?

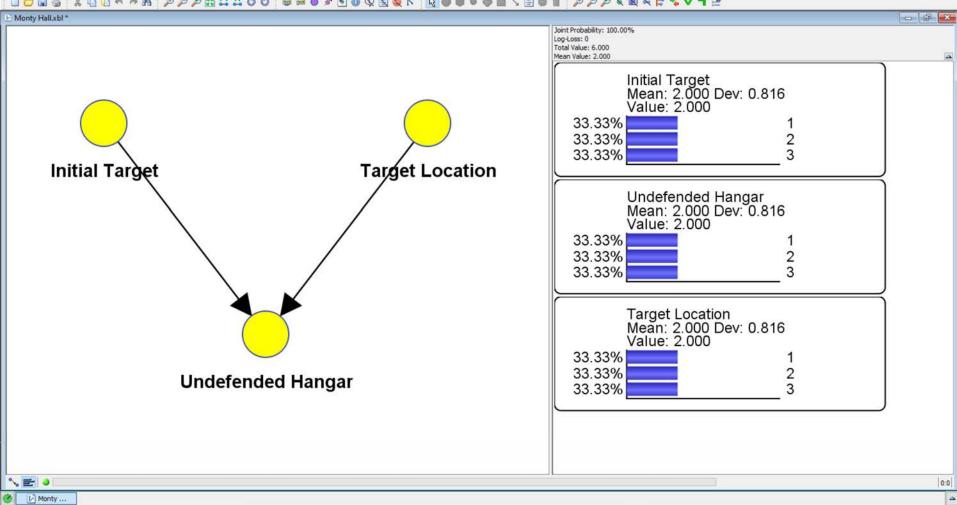



### **Choose Your Battle Wisely!**

Let's take a vote...

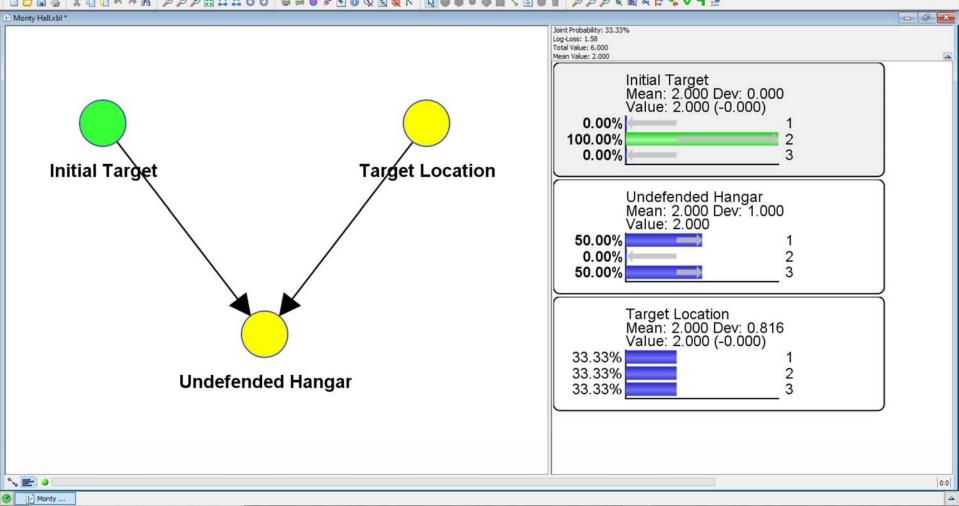


#### BayesiaLab.com


## **Encoding our Intelligence**

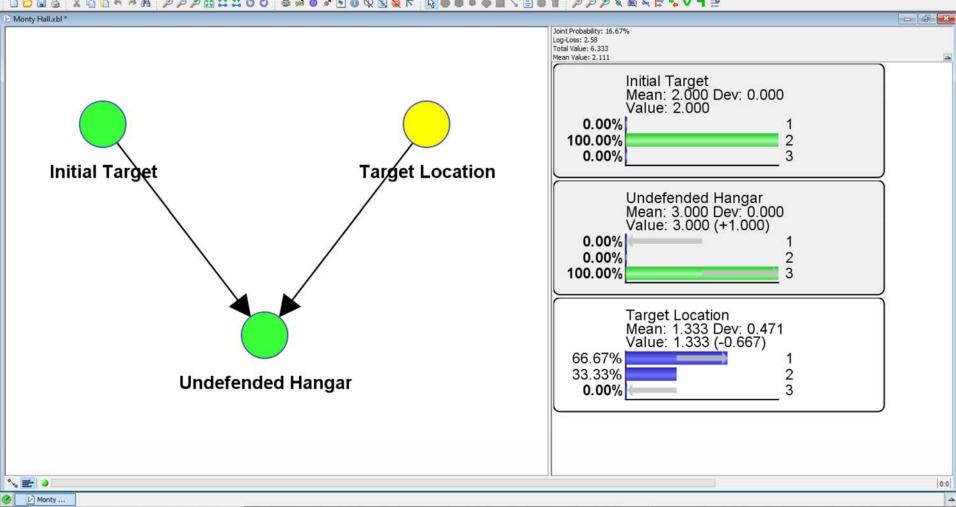


#### BayesiaLab.com


🔀 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Presentations\2018-09-11 BN-ISR Arlington\Monty Hall\Monty Hallxbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

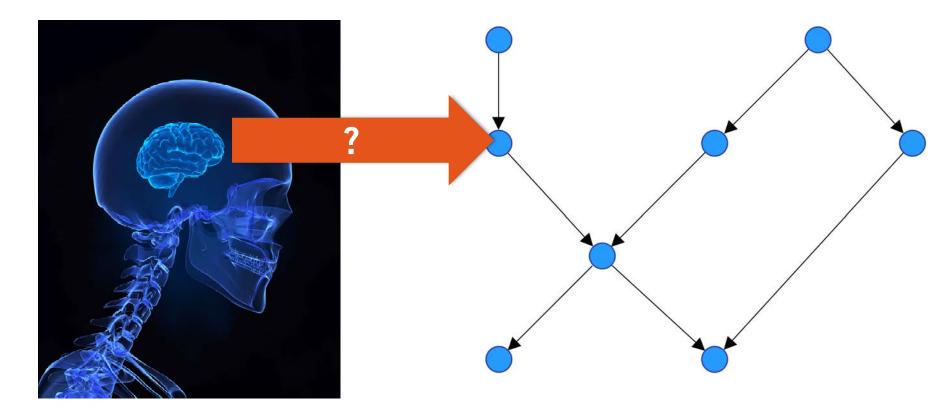



🔀 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Presentations\2018-09-11 BN-ISR Arlington\Monty Hall\Monty Hallxbl





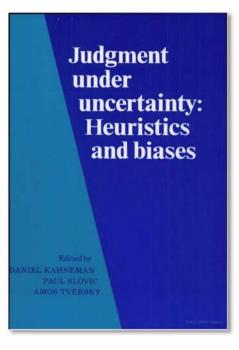
🔀 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Presentations\2018-09-11 BN-ISR Arlington\Monty Hall\Monty Hallxbl


Network Data Edit View Learning Inference Analysis Monitor Tools Window Help





# The Bayesia Expert Knowledge Elicitation Environment


### **Knowledge Elicitation?**



### **Individual Biases**

#### **Examples**

- Overconfidence
- Confirmation bias
- Framing effect
- Escalation of commitment
- Availability bias
- Illusion of control
- Anchoring bias



## **Group Biases**

#### **Examples**

- Groupthink ("toeing the line")
- Social loafing ("hiding in the crowd")
- Group polarization ("taken to the extreme")
- Escalation of commitment ("throwing good money after bad", "sunken costs fallacy")

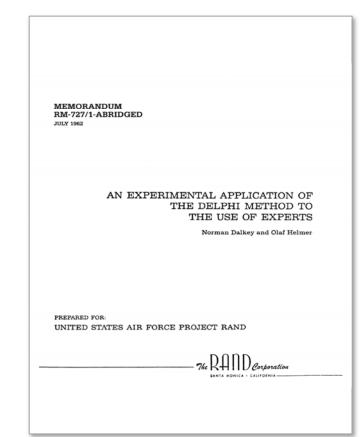


# BAYESIALAB

# **The Delphi Method**

A Consultation of the Delphic Oracle: Themis on the Tripod with King Aegeus, c. 440 BC

### **The Delphi Method**


#### **Interacting Groups**

- Take the positive, e.g.
  - Knowledge from a variety of sources
  - Creative synthesis
- Prevent the negative, e.g.
  - Groupthink ("toeing the line")
  - Social loafing ("hiding in the crowd")
  - Group polarization ("taken to the extreme")

### **The Delphi Method**

### Origins

- The original Delphi method was developed in the 1940s and 50s by Norman Dalkey of the RAND Corporation.
- The Delphi method was devised in order to obtain the most reliable opinion consensus of a group of experts by subjecting them to a series of questionnaires in depth interspersed with controlled opinion feedback.



## **The Delphi Method**

### The Classical Delphi

- Interviews via questionnaires
- Anonymity of participants
- Iteration
- Controlled feedback
- Statistical aggregation

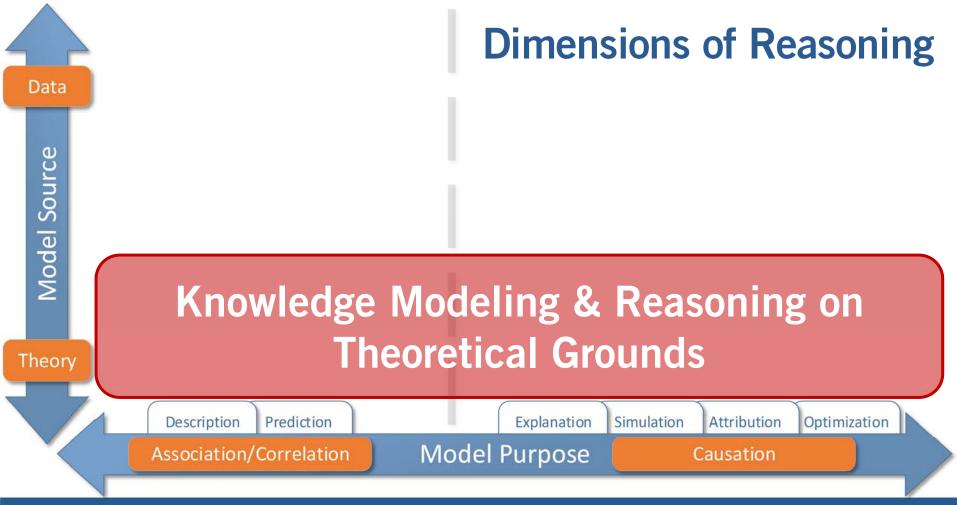


### **First Experimental Application**

"to solicit expert opinion to the selection, from the point of view of a Soviet strategic planner, of an optimal U.S. industrial target system..."



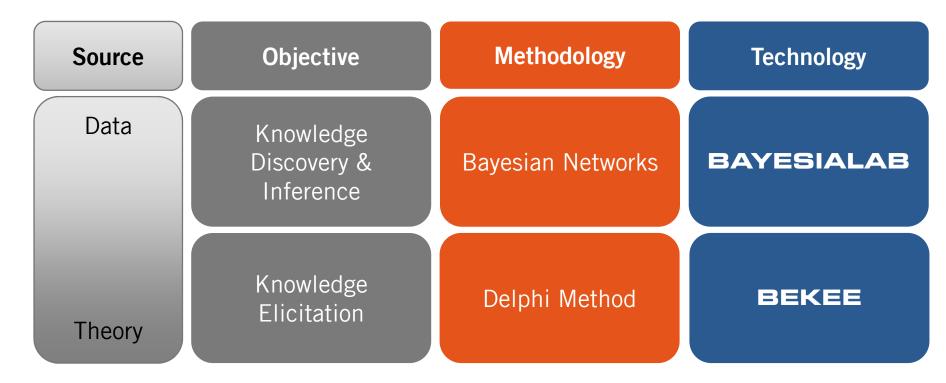



#### stefan.conrady@bayesia.us

### **Delphi Method Assessment**

"In view of the absence of a proper theoretical foundation and the consequent inevitability of having, to some extent, to rely on intuitive expertise—a situation which is still further compounded by its multidisciplinary characteristics—we are faced with two options: we can either throw up our hands in despair and wait until we have an adequate theory enabling us to deal with socioeconomic and political problems as confidently as we do

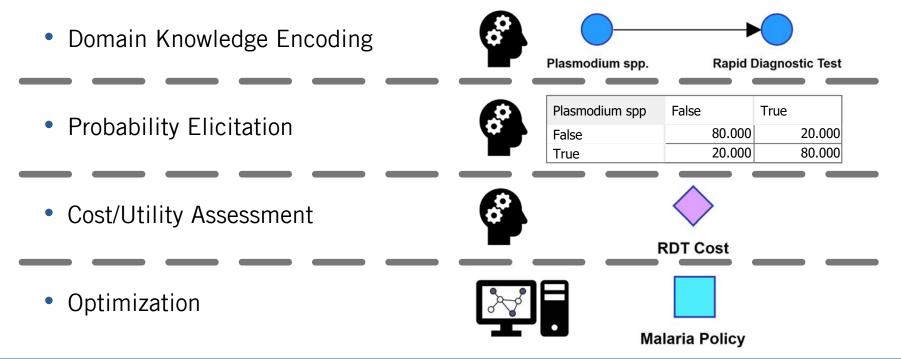
with problems in physics and chemistry, or we can make the most of an admittedly unsatisfactory situation and try to obtain the relevant intuitive insights of experts and then use their judgments as systematically as possible."


| ANALYSIS OF THE FUTURE: THE DELPHI METHOD |
|-------------------------------------------|
| Olaf Helmer                               |
| March 1967                                |

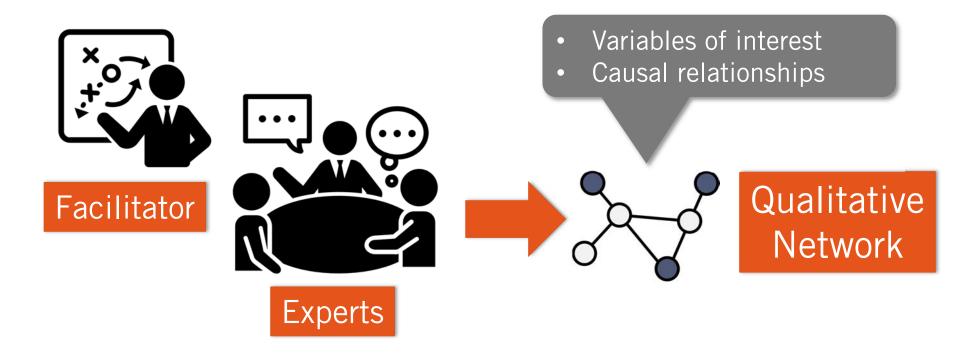


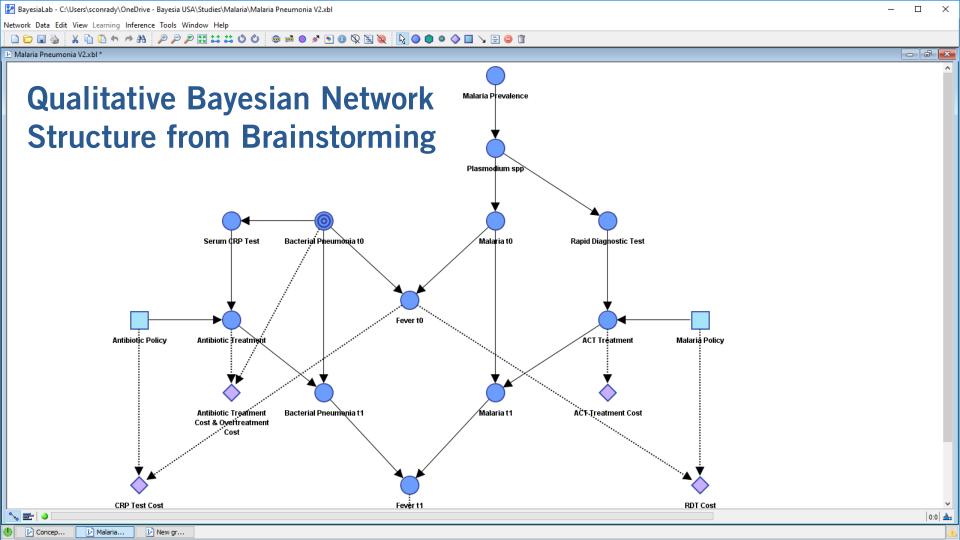
BayesiaLab.com

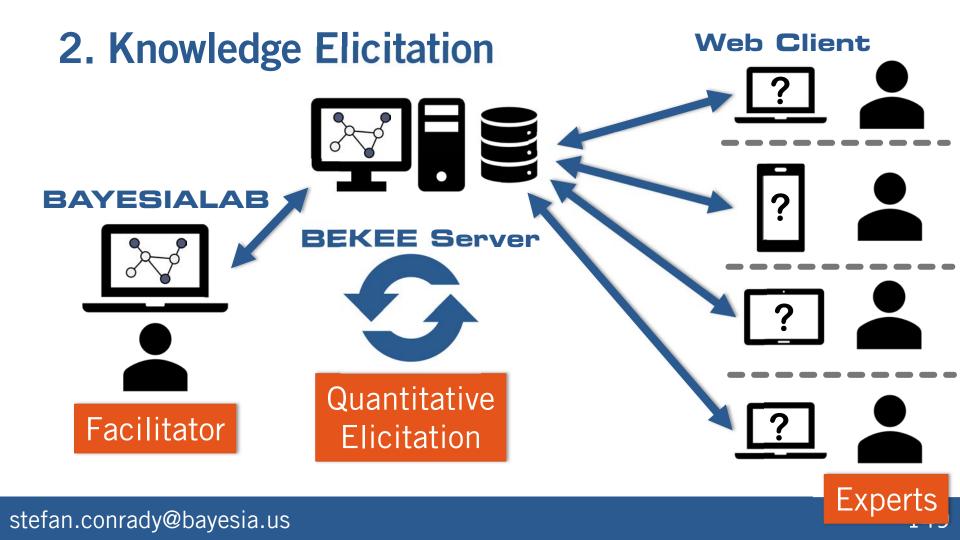


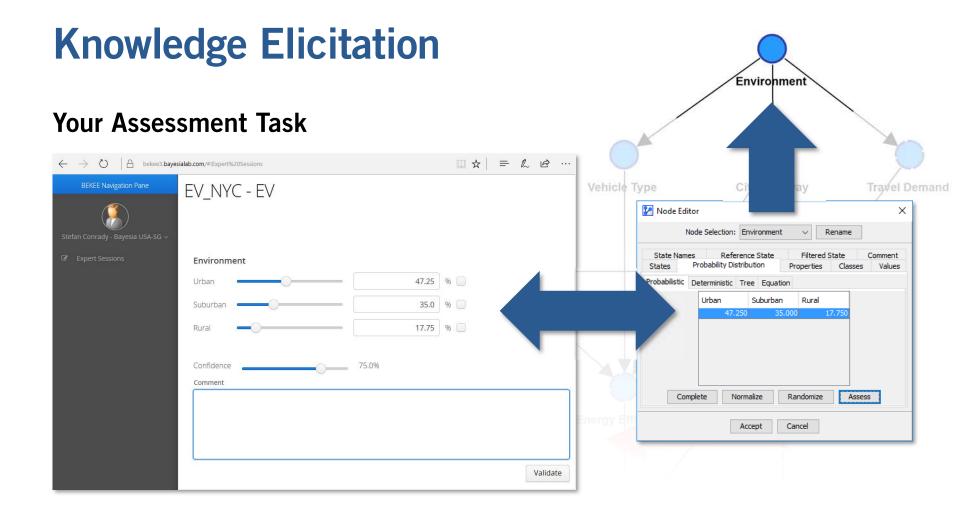

### **Conceptual Overview**



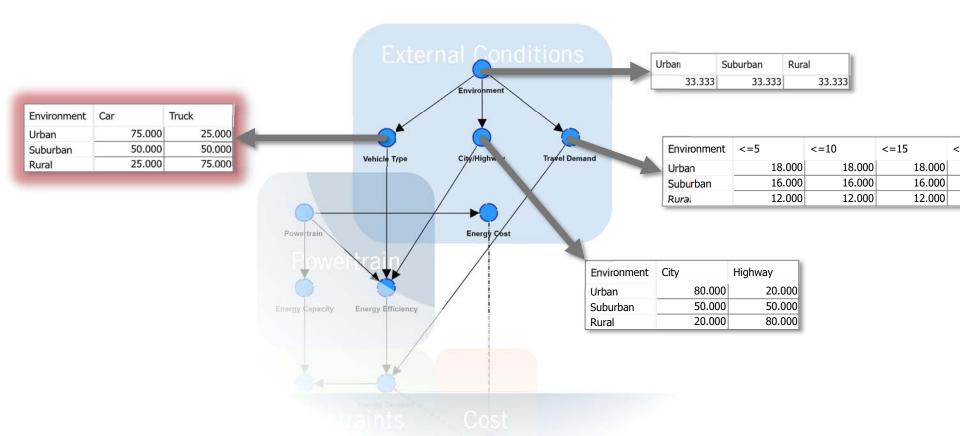

stefan.conrady@bayesia.us


## **Policy Development?**


#### **Proposed Policy Development Approach**




### 1. Brainstorming & Model Construction





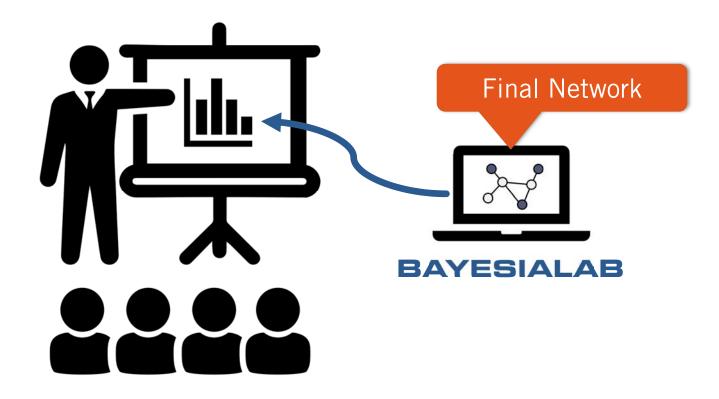





### **Knowledge Elicitation**



🔀 BayesiaLab – C:\Users\StefanConrady\OneDrive - Bayesia USA\Studies\Speeding\New graph 6.xbl


Network Data Edit View Learning Inference Tools Window Help

🕜 📝 New gr...

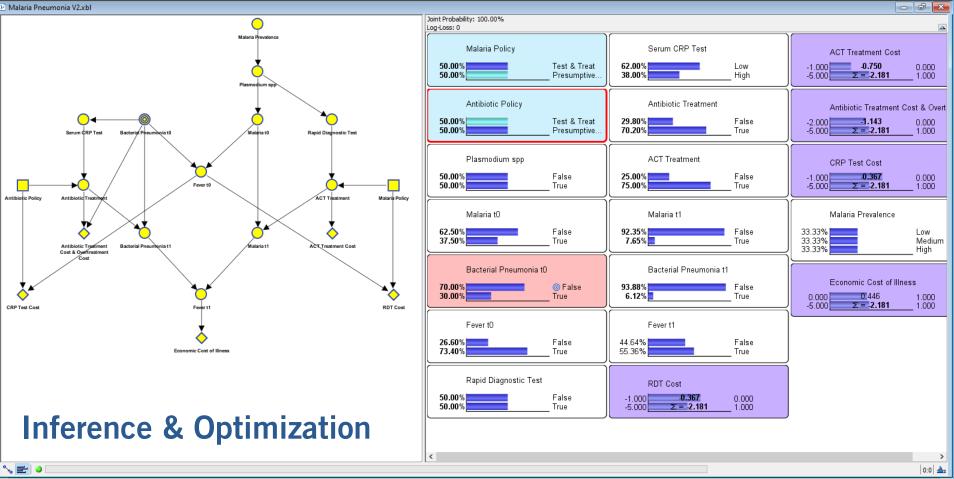
#### 

| ph 6.xbl *                      |                      |                  |            |                     |               |   |                     |                |             |                |                |          |                   | 0 |
|---------------------------------|----------------------|------------------|------------|---------------------|---------------|---|---------------------|----------------|-------------|----------------|----------------|----------|-------------------|---|
|                                 |                      |                  |            |                     |               |   | C                   | 2              |             |                |                |          |                   |   |
| Node Editor                     |                      |                  |            |                     |               |   | Assess              | sment Editor   |             |                |                |          | ×                 | 1 |
|                                 | Node Sele            | ction: Radar Ale | ert v      | Rename              |               | F | Radar Detector Poli |                |             | Police Presend | vlice Presence |          |                   |   |
| States Probability Distribution | Properties Classes V | alues State Na   | mes Refere | ence State Filtered | State Comment |   | On<br>On            |                |             |                | False<br>True  |          |                   |   |
| Probabilistic Deterministic Tr  | ree Equation         |                  |            |                     |               |   | Off<br>Off          |                |             | F              | False<br>True  |          |                   |   |
|                                 | Radar Det            |                  | False      | True                |               |   | False               | True           | Expert      | Confidence     | 1              | Time     | Add               | 1 |
|                                 | On                   | False<br>True    |            |                     |               |   | raise               | True           | expert      | Confidence     | Commeric       | Time     | Delete            |   |
|                                 | Off                  | False<br>True    |            |                     |               |   |                     |                |             |                |                |          | BEKEE Elicitation |   |
|                                 |                      |                  |            |                     |               |   |                     |                |             |                |                |          | Random Order      |   |
|                                 |                      |                  |            |                     |               |   |                     |                |             |                |                |          |                   |   |
|                                 |                      |                  |            |                     |               |   |                     |                |             |                |                |          |                   |   |
|                                 |                      |                  |            |                     |               |   |                     |                | Elicitation | Progress       |                | ×        |                   |   |
|                                 |                      |                  |            |                     |               |   |                     |                | Expert      | An             | nswered (0%)   |          |                   |   |
|                                 |                      |                  |            |                     |               |   |                     |                | Stefan C    | onrady         |                | 0%       |                   |   |
|                                 |                      |                  |            |                     |               |   |                     |                |             |                |                |          |                   |   |
|                                 |                      |                  |            |                     |               |   | L                   |                |             |                |                |          |                   |   |
|                                 |                      |                  |            |                     |               |   |                     |                |             |                |                |          |                   |   |
|                                 |                      |                  |            |                     |               |   |                     |                |             |                |                |          |                   |   |
|                                 |                      |                  |            |                     |               |   |                     |                |             |                |                |          |                   |   |
|                                 | Complete             | Normalize        | Random     | ize Assess          | ]             |   |                     |                |             | ОК             | Cancel         |          |                   |   |
|                                 |                      |                  |            |                     |               |   |                     |                |             |                |                |          |                   |   |
|                                 |                      | OK               | Cancel     |                     |               |   |                     | ( <b>(D</b> )  |             |                |                | <b>f</b> |                   |   |
|                                 |                      |                  |            |                     |               |   |                     | <sup></sup> Pa | ram         | ete            | rs"            | Tror     | n BEK             | ۲ |
|                                 |                      |                  |            | Fine                | U2            |   |                     |                |             |                |                |          |                   |   |
| beialah e                       | n                    |                  |            |                     |               |   |                     |                |             |                |                |          |                   |   |

### 3. Inference, Analysis, and Optimization



Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

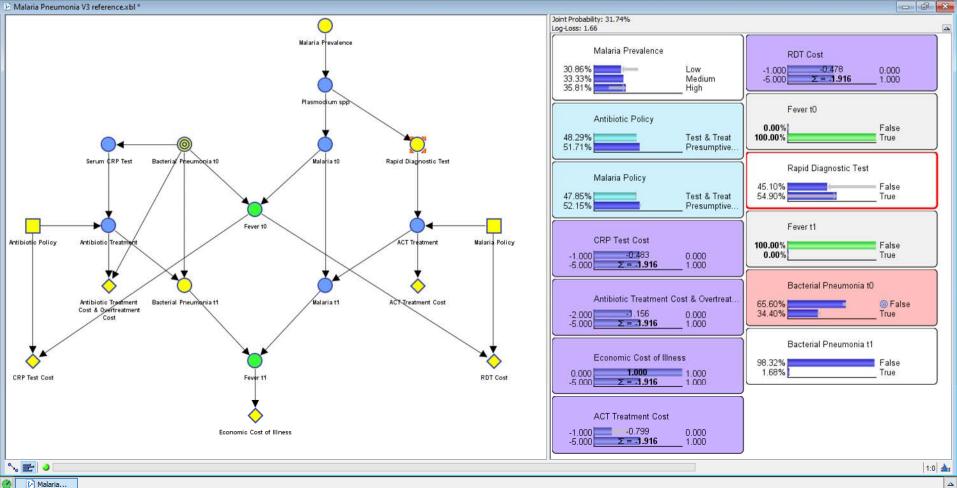

#### 🗋 🔁 🖫 🎍 🕺 🖞 🐂 舟 舟 舟 🖉 🔎 魚 麗 😂 🙂 🌒 🖉 🗨 🜒 🖉 💽 🐨 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉

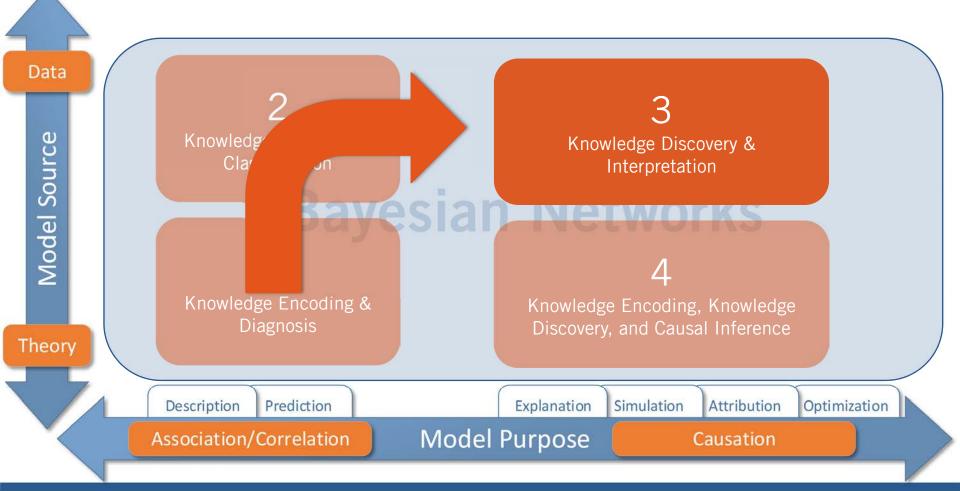
#### Malaria Pneumonia V2.xbl

Concep...

🕑 Malaria...

🚺 New gr...

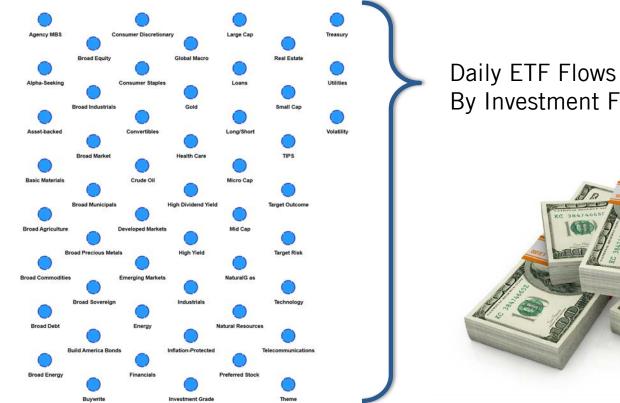




🔀 BayesiaLab - C:\Users\StefanConrady\OneDrive - Bayesia USA\Studies\Malaria\Malaria Pneumonia V3 reference.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

#### 

#### Malaria Pneumonia V3 reference.xbl \*








Exchange-Traded Funds Knowledge Discovery, Interpretation, and Anomaly Detection

## **Problem Domain: Money Flows**



By Investment Focus

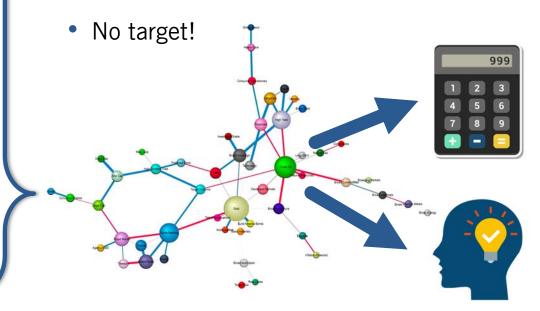


| A           | A                 |                   |                   |                   | 101               | 10111             |                   |                                                  | AEE 0 531351         | 1 mm 1            |                   |                    |                                                  | AGN /             |                      | 1-8m                                                                 |                   | AKS 0.533276      | ALL               | ALTR<br>0.531990  | AMAT                 | AMD               | AMGN              | AMT             |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------------------------------------|----------------------|-------------------|-------------------|--------------------|--------------------------------------------------|-------------------|----------------------|----------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-----------------|
|             | 0.570868-5        | 0.570668          | 0.46678           | 0.408163          | 0.332512          | 0.49727           | 0.513974          | 0.453742                                         | 0.531351             | 0.485749          | 0.555778          | 0.386.198          | 0.505729                                         | 0.417878          | 0.500105             | 0.450875                                                             | 0.4315            | 0.555276          | 0.598741          | 0.445484          | 0.502898             | 0.454983          | 0.368191          | 3202            |
| APL         | 0.466779          | 0.412423          | 1.410.12.0        | 0.226667          | 0.41525           |                   |                   | 0.417302                                         | 0.340484             | 0.200027          |                   | 0.289725           | 0.334087                                         |                   | 0.402048             | 0.340316                                                             | 0.38855           | 0.422112          |                   | 0.444068          | 0,483454             |                   |                   | 0.43705         |
| ABC         | 0.408 3           | 1,3691,24         | Dissessor A       |                   | 0.7 1 82          | 0.299404          | 0.416991          | 0.31169                                          | 0.440094             | T ATAN            | 0.347076          | 10 A085 B          | 6 20 115                                         | p-sqteae          | 10,33                | 1 330003                                                             | 0.000000          | 120 B             |                   |                   | 0.309671             |                   |                   | 0.34777         |
| ADI         | 0.533 2           |                   |                   | 0.19.127          |                   | 0 2 🙉             |                   | A Mar                                            | 0.4 588              | 171848            |                   |                    |                                                  |                   | 0.462                |                                                                      | 0. 461 1          | 48 424            | 0.423266          |                   |                      | 0.495377          | 0.330517          | 0.43712         |
| ADM<br>ADP  | 0.425             | )ef               | au                | 2.1 18 11         |                   |                   |                   |                                                  | 0.4 2423             |                   |                   |                    | <u> </u>                                         |                   | 0.386 6.             |                                                                      | 0.121.5           |                   | 0,392224          |                   |                      |                   |                   | 0.41404         |
| ADSK        | 0.000020          | 0.513374          |                   | 0.410001          | 0.483746          | 0.32 2002         | 0.452696          | 0.462000                                         | 0.092008             |                   |                   |                    | 0.50101                                          |                   |                      |                                                                      |                   | 0.49840           | 0.41419           |                   |                      |                   |                   | 1559            |
| AEE         | 0.531351          | 0.540668          | 0.340484          | 0.440094          | 0.425898          | 0.452433          | 0.542809          | 0.421398                                         | 1                    | 0.756735          | 0.590583          | 0.424766           | 0.513378                                         | 0,475327          | 0.474898             | 0,473565                                                             | 0.321768          | 0.452686          | 0.537636          | 0.447271          | 0.436028             | 0.31983           | 0.390525          | 0.46507         |
| AEP         | 0.486749          | 0.487494          | 0.322327          | 0.417974          | 0.371848          | 0.403492          | 0.527541          | 0.402325                                         | 0.756735             | 1                 | 0.565275          | 0.403458           | 0.42596                                          | 0.440173          | 0.419188             | 0.458727                                                             | 0.318872          | 0.422276          | 0.459285          | 0.396228          | 0.417472             | 0.292099          | 0.398822          | 0.44686         |
| AES         | 0.490094          | 0.555778          | 0.319482          | 0.347976          | 0.343594          | 0.417093          | 0.456298          | 0.442238                                         | 0.590583             | 0.565275          |                   | 0.378383           | 0.476892                                         | 0.40224           | 0.420327             | 0.453099                                                             | 0.34483           | 0.492532          | 0.476188          | 0.349014          | 0.398017             | 0.315139          | 0.308978          | 0.43849         |
| AET         | 0.384297 0.476417 | 0.386198          | 0.289725 0.334087 | 0.408529          | 0.314271 0.389693 | 0.305003 0.366817 | 0.372908          | 0.349215                                         | 0.424766 0.513378    | 0.403458          | 0.378383          | 0.370713           | 0.370713                                         | 0.421565 0.418877 | 0.364347 0.588516    | 0.420521                                                             | 0.249157 0.351403 | 0.360531          | 0.427641 0.634718 | 0.290668          | 0.279035             | 0.275143 0.364762 | 0.321026          | 0.40132         |
| AGN         | 0.465186          | 0.417878          | 0.328982          | 0.391646          | 0.366576          | 0.304062          | 0.486193          | 0.389226                                         | 0.475327             | 0.440173          | 0.400002          | 0.421565           | 0.418877                                         |                   | 0.422619             | 0.396071                                                             | 0.323589          | 0.388559          | 0.443402          | 0.332295          | 0.393542             | 0.347243          | 0.345897          | 0.46164         |
| AIV         | 0.506165          | 0.533665          | 0.402068          | 0.33699           | 0.462091          | 0.366267          | 0.526986          | 0.447525                                         | 0.474898             | 0.419188          | 0.420327          | 0.364347           | 0.588516                                         | 0.422619          |                      | 0.558192                                                             | 0.408232          | 0.49093           | 0.644666          | 0.485371          | 0.541239             | 0.390922          | 0.30768           | 0.51283         |
| AIZ         | 0.450875          | 0.525495          | 0.340316          | 0.360633          | 0.371839          | 0.358504          | 0.507023          | 0.405751                                         | 0.473565             | 0.458727          | 0.453099          | 0.420521           | 0.588617                                         | 0.396071          | 0.558192             | 1                                                                    | 0.353718          | 0.45162           | 0.616235          | 0.378966          | 0.430116             | 0.315676          | 0.343417          | 0.51319         |
| AKAM        | 0.4315            | 0.433653          | 0.38855           | 0.288028          | 0.426141          | 0.389176          | 0.406286          | 0.392804                                         | 0.321768             | 0.318872          | 0.34483           | 0.249157           | 0.351403                                         | 0.323589          | 0.408232             | 0.353718                                                             |                   | 0.438362          | 0.364883          | 0.435992          | 0.428331             | 0.368554          | 0.245363          | 0.41971         |
| AKS<br>ALL  | 0.533276 0.490529 | 0.691676          | 0.432112 0.351426 | 0.340885          | 0.460124 0.423266 | 0.452943 0.392224 | 0.476395          | 0.43849                                          | 0.452686 0.537636    | 0.422276 0.459285 | 0.492532 0.476188 | 0.360531           | 0.446767 0.634718                                | 0.388559          | 0.49093              | 0.45162 0.616235                                                     | 0.438362 *        | 0.478014          | 0.478014          | 0.420897          | 0.475609 0.503192    | 0.423204          | 0.337167          | 0.50870         |
| ALTR        | 0.521889          | 0.443481          | 0.444068          | 0.39043           | 0.691107          | 0.352995          | 0.513513          | 0.46149                                          | 0.447271             | 0.396228          | 0.349014          | 0.290668           | 0.390395                                         | 0.332295          | 0.485371             | 0.378966                                                             | 0.384883          | 0.478014          | 0.436321          | 0.430321          | 0.645041             | 0.490712          | 0.332572          | 0.48028         |
| AMAT        | 0.541416          | 0.502896          | 0.463454          | 0.309671          | 0.638214          | 0.339473          | 0.515278          | 0.497755                                         | 0.436028             | 0.417472          | 0.398017          | 0.279035           | 0.459462                                         | 0.393542          | 0.541239             | 0.430116                                                             | 0.428331          | 0.475609          | 0.503192          | 0.645041          |                      | 0.481282          | 0.354883          | 0.48277         |
| AMD         | 0.454983          | 0.406542          | 0.395558          | 0.244243          | 0.495377          | 0.274791          | 0.394056          | 0.396007                                         | 0.31983              | 0.292099          | 0.315139          | 0.275143           | 0.364762                                         | 0.347243          | 0.390922             | 0.315676                                                             | 0.368554          | 0.423204          | 0.387605          | 0.490712          | 0.481282             |                   | 0.230527          | 0.39001         |
| AMGN        | 0.388191          | 0.357239          | 0.330339          | 0.36276           | 0.330517          | 0.266671          | 0.406387          | 0.333145                                         | 0.390525             | 0.398822          | 0.308978          | 0.321026           | 0.285856                                         | 0.345897          | 0.30768              | 0.343417                                                             | 0.245363          | 0.337167          | 0.312268          | 0.332572          | 0.354883             | 0.230527          |                   | 0.32734         |
| AMT<br>AMZN | 0.526454 0.447969 | 0.532022 0.369067 | 0.437053          | 0.347773          | 0.467126          | 0.4 046 0.3 61    | 0.49088           | 0.4559                                           | 465076               | 0.446867 0.314108 | 0.438492 0.28071  | 0.401321 0.280863  | 0.50493                                          | 0.461649 0.336944 | 0.5 8831             | 0 3195                                                               | 0.419715 0.385661 | 0.508704 0.390437 | 0.525026 0.351342 | 0.480285          | 0.482778             | 0.390012          | 0.327344          | 0 41254         |
| AN          | 0.434231          | 0.421882          | 0.356532          | 0.32279           | 0.396946          | 0.56              | 0                 | 0.383106<br>0.35176<br>0.1525<br>19516<br>403304 | 118626               | 0.403467          | 0.396463          |                    | 0.398142                                         | 0.405956          | 0 987                | 0 7806<br>0 9416<br>0 6877<br>0 53<br>0 5516<br>0.471801<br>0 207321 | 0.3255            | 0.385994          | 0.468298          | 0.407543          | 0.442268             | 0.38444           | 0 24893           | 0 45498         |
| AON         | 0.355157          | 0.302349          | 0.313291          | 0.285397          | 0.317104          | 0.56<br>0.25 9    | 0 .5              | 0 525                                            | .34560               | 0.403467 0.299781 | 0.396463 0.263416 | 0.3038<br>0.288455 | 0.398142                                         | 0.357269          | 0. 4752              | 0 6877                                                               | 0.274928          | 0.206637          | 0.374335          | 0.333994          | 0.335388             | 0.251346          | 0.277415          | 0.37144         |
| APA         | 0.526604          | 0.650504          | 0.418089          | 0.336526          | 0.412846          | 0.50              | 4748              | 19516                                            | 3/                   | 0.50432           | 0.556142          | 0.33536            | 5.1.13333<br>152686<br>953<br>115335             | 0.39499           |                      | 2                                                                    | 899643            | 920019            | 0.444357          | 0.391492          | 0.432124             | 0.354574          | 0.370017          | 0.50561         |
| APC         | 0.511121          | 0.615743          | 0.400957          | 0.331357          | 0.392937          | 0.489             | 0.4724            | 403304                                           | .619<br>.53309       | 4 807             | .540523<br>0.5372 | 0.3 686            | 162686                                           | 0.4121            | 8701                 | 0 33                                                                 | 77 1              | 1379              | 0.455029          | 0.379509          | 0.420906             | 0.355932          | 0.348863          | 0.49813         |
| APD<br>APH  | 0.599624 0.609062 | 0.660684          | 0.474523 0.440578 | 0.393305          | 0.485184 0.54679  | 0.4746            | 0.59155           | 0.50851                                          | 0.528604             | 400               | 0.5372            | 0.3 600            | 953                                              | 0.504504          | 37077                | 0.471801                                                             | 62 1              | / 195             | 0.535803 0.506047 | 0.48682           | 0.535256 0.569614    | 0.432996 0.457246 | 0.381744 0.353911 | 0.54940         |
| APOL        | 0.259251          | 0.198149          | 0.238565          | 0.197063          | 0.263308          | 0.188051          | 0.285516          | 0.19829                                          | 0.224831             | 0.22576           | 0.196726          | 0.14888            | 0.187304                                         | 0.273628          | 0.249256             | 0.207321                                                             | 0.226805          | 0.189848          | 0.209487          | 0.265137          | 0.280968             | 0.199441          | 0.242931          | 0.25121         |
| ARG         | 0.463581          | 0.545822          | 0.365495          | 0.312003          | 0.394891          | 0.396253          | 0.454898          | 0.397411                                         | 0.426527             | 0.3940            | 0.422672          | 0.326101           | 0.41313                                          | 0.439539          | 0.468224             | 0.469585                                                             | 0.393391          | 0.517099          | 0.45627           | 0.399145          | 0.450687             | 0.382813          | 0.327768          | 0.46463         |
| ATI         | 0.551702          | 0.671155          | 0.468605          | 0.32646           |                   | 0.46153           | 0.481823          | 0.474792                                         | 0.426529             | 0.404             | 0,501507          | 0.367617           | 0.485348                                         | 0.427184          |                      | 0.46796                                                              | 0.483708          | 0.70012           | 0.46907           | 132982            | 0.516144             | 0.429832          | 0.317248          | 0.56100         |
| AVB<br>AVP  | 0.506355          | 0.522914 0.475688 | 0.40051           | 0.35525           | 0.461656 0.361129 | 0.387026          | 0.563926          | 0.469986 0.364843                                | 0.492949 0.444585    | 0.458             | 0.44052 0.415096  | 0.39079            | 0.592147<br>0.41179                              | 0.46746           | 0.835156             | 0.542785                                                             | 0.426172 0.301925 | 0.490971 0.397706 | 0.483325          | 0013              | 0.527593 0.386897    | 0.389846          | 0.341269 0.30347  | 0.54797         |
| AVP         | 0.425979          | 0.475688          | 0.281466          | 0.373409          | 0.361129          | 0.321322          | 0.587385          | 0.364843                                         | 0.544327             |                   | 0.415096          | 0 200442           | 0 527050                                         | 0 472000          | 0 566527             | 0 524022                                                             | 0.454044          | 0 641006          | 0 527007          | 70012             | 0.53628              | 0.263946          | 0.30347           | 0.410/6         |
| AXP         | 0.550383          | 0.556598          | 0.451681          | 0.348597          | 0.491924          | 0.383629          | 0.552677          | 0                                                | 0.5                  | 0.463986          | 0.409597          | 0.418844           | 0.627479                                         | 192441            | 66095                | 0.56552                                                              | 0.431011          | 0.5               | 0.0070            | 0,490164          | 0.533405             | 0.445452          | 0.354874          | 0.52307         |
| AZO         | 0.389197          | 0.36613           | 0.359618          | 0.323528          | 37567             | 0.3               | P                 | 50516                                            | 0 4/                 |                   | 0.491165          | 0.316557           | 0.3 59                                           | 10.36347          | 0819                 | 0.7                                                                  | 0.3               | 0. 25             | 0                 | 0.395659          | 0.390238             | 0.30307           | 0.306064          | 0.40904         |
| BA          | 0.536792          | 0.553126          | 0.389873          | 0.3768            | 567               | 0, 61             | 300               | 478263                                           | 0.495<br>0.495       | 0.46027           | 0.491165          | 0.38215            | 0.337939<br>0.627479<br>0.3769<br>0.039<br>0.039 | 813               | 3537                 | 0                                                                    | 0.395             | 0.475             | 0. 3653           | 0.422577          | 0.463405             | 0.373107          | 0.373122          | 0.47280         |
| BAC<br>BAX  | 0.433308 0.364164 | 0.493382 0.337779 | 0.366495          | 0.270             | 0.30251           | 0.2033            | 0.4455            | 0                                                | 0.                   | 0.35080           | 0.392386          | 0.38205            | 691                                              | 1                 | 5                    | 0.20                                                                 | 0.200             | 0.2               | 0.616693          | 0.379977 0.310075 | 0.452684 0.313548    | 0.351244 0.196071 | 0.267629 0.38861  | 0.44308 0.34870 |
| BBBY        | 0.468221          | 0.423139          | 0.413509          | 0.328158          | 0.473787          | 0.297855          | 0.510004          | 0.456691                                         | 0.4146               | 0.426185          | 0.369653          | 0.342143           | 0.423561                                         | 0.429473          | 0.547763             | 0.43304                                                              | 0.376829          | 0.408935          | 0.506375          | 0.481281          | 0.504136             | 0.378435          | 0.3283            | 0.49923         |
| BBT         | 0.433809          | 0.463028          | 0.368087          | 0.279989          | 0.411282          | 0.342422          | 0.476331          | 0.425786                                         | 0.411694             | 0.350015          | 0.383004          | 0.35486            | 0.598343                                         | 0.401062          | 0.666529             | 0.515845                                                             | 0.358925          | 0.414523          | 0.61633           | 0.449899          | 0.485143             | 0.360988          | 0.29298           | 0.47933         |
| BBY         | 0.495356          | 0.449696          | 0.399563          | 0.347432          | 0.45022           | 0.291525          | 0.490867          | 0.44886                                          | 0.43886              | 0.382908          | 0.385523          | 0.401162           | 0.45557                                          | 0.424426          | 0.541647             | 0.431485                                                             | 0.4222            | 0.433192          | 0.518191          | 0.455636          | 0.495246             | 0.401394          | 0.302345          | 0.50244         |
| BCR<br>BDX  | 0.391906          | 0.310775          | 0.230796 0.28627  | 0.370898          | 0.3114            | 0.303303          | 0.423118          | 0.302315                                         | 0.375128 0.428896    | 0.395765          | 0.281414 0.339695 | 0.309679 0.380397  | 0.250455<br>0.29795                              | 0.368434 0.38625  | 0.28138              | 0.25144                                                              | 0.259484          | 0.293674          | 0.283488 0.364802 | 0.338499          | 0.30658              | 0.19321           | 0.327033 0.355392 | 0.32493         |
| BEN         | 0.381317          | 0.358334          | 0.483591          | 0.432165          | 0.528481          | 0.326909          | 0.601154          | 0.539768                                         | 0.428896             | 0.431607          | 0.339695          | 0.380397           | 0.611032                                         | 0.518374          | 0.315431             | 0.341334                                                             | 0.458693          | 0.294382          | 0.364802          | 0.545534          | 0.59278              | 0.242783          | 0.355392          | 0.58419         |
| BHI         | 0.496655          | 0.607791          | 0.365382          | 0.301868          | 0.410752          | 0.429127          | 0.483844          | 0.413269                                         | 0.516468             | 0.457134          | 0.521625          | 0.308698           | 0.475569                                         | 0.427503          | 0.450773             | 0.488756                                                             | 0.376165          | 0.584975          | 0.462373          | 0.39785           | 0.440008             | 0.36379           | 0.351432          | 0.48941         |
| BIG         | 0.417729          | 0.370997          | 0.34669           | 0.300351          | 0.414284          | 0.296822          | 0.424466          | 0.345094                                         | 0.337216             | 0.340012          | 0.298675          | 0.246715           | 0.324984                                         | 0.319566          | 0.464709             | 0.348216                                                             | 0.325918          | 0.389046          | 0.392591          | 0.414227          | 0.458111             | 0.331507          | 0.265201          | 0.39491         |
| BIIB        | 0.309555          | 0.285352          | 0.238974          | 0.251218          | 0.283607          | 0.222656          | 0.301568          | 0.279752                                         | 0.289901             | 0.282314          | 0.266317          | 0.25128            | 0.232275                                         | 0.299019          | 0.285074             | 0.268744                                                             | 0.242028          | 0.27073           | 0.285807          | 0.291492          | 0.287344             | 0.229893          | 0.327606          | 0.30088         |
| BK<br>BLL   | 0.489067 0.532978 | 0.468321 0.569608 | 0.464737 0.438978 | 0.313512 0.381642 | 0.436839          | 0.421527          | 0.531194 0.527822 | 0.447572                                         | 0.468614 0.503021    | 0.430723          | 0.410842          | 0.4326             | 0.590017<br>0.457009                             | 0.425655          | 0.643937<br>0.515473 | 0.555759 0.450148                                                    | 0.398695          | 0.473072          | 0.602925          | 0.462608          | 0.501537             | 0.364609          | 0.384531          | 0.53404         |
| BMC         | 0.532978          | 0.426124          | 0.39192           | 0.381642          | 0.452186          | 0.35346           | 0.483539          | 0.467046                                         | 0.39745              | 0.391245          | 0.394793          | 0.306678           | 0.384154                                         | 0.383363          | 0.515473             | 0.405406                                                             | 0.402386          | 0.384378          | 0.385776          | 0.451672          | 0.469597             | 0.393521          | 0.319991          | 0.51598         |
| BMS         | 0.557018          | 0.546             | 0.445594          | 0.40427           | 0.474782          | 0.419983          | 0.585078          | 0.465557                                         | 0.512328             | 0.478471          | 0.48273           | 0.385279           | 0.520274                                         | 0.456144          | 0.594567             | 0.491022                                                             | 0.395979          | 0.504484          | 0.537416          | 0.491115          | 0.530614             | 0.372977          | 0.381359          | 0.53843         |
| BMY         | 0.411691          | 0.412368          | 0.3273            | 0.41428           | 0.363813          | 0.314146          | 0.428291          | 0.37372                                          | 0.470029             | 0.455511          | 0.363957          | 0.407842           | 0.353649                                         | 0.431329          | 0.380266             | 0.352307                                                             | 0.301861          | 0.330497          | 0.390222          | 0.370411          | 0.345948             | 0.269758          | 0.376972          | 0.39600         |
| BRCM        | 0.490844          | 0.385385          | 0.485508          | 0.255478          | 0.625875          | 0.299905          | 0.441099          | 0.442124                                         | 0.319002             | 0.309001          | 0.290782          | 0.250998           | 0.346102                                         | 0.342665          | 0.398453             | 0.305771                                                             | 0.424602          | 0.421353          | 0.338205          | 0.644431          | 0.580699             | 0.452178          | 0.308477          | 0.43428         |
| BSX<br>BTU  | 0.436815 0.510592 | 0.416474 0.670683 | 0.28357           | 0.344597 0.296738 | 0.350234 0.417331 | 0.272351 0.484134 | 0.405498          | 0.336515                                         | 0.439737<br>0.453023 | 0.412979 0.393542 | 0.383164 0.503184 | 0.365185           | 0.363128 0.429952                                | 0.431504 0.387467 | 0.365194 0.466927    | 0.356593 0.436209                                                    | 0.298881 0.447905 | 0.374756 0.664027 | 0.431941 0.430931 | 0.351716 0.399014 | 0.352277<br>0.427335 | 0.310221          | 0.351996          | 0.36969         |
| BXP         | 0.505837          | 0.523994          | 0.411981          | 0.347926          | 0.503783          | 0.393692          | 0.56129           | 0.409263                                         | 0.453023             | 0.393542          | 0.503184          | 0.316202           | 0.608646                                         | 0.387467          | 0.825278             | 0.436209                                                             | 0.433873          | 0.508949          | 0.430931          | 0.399014          | 0.544885             | 0.389681          | 0.33163           | 0.55333         |
| 2           | 0.417005          | 0.419585          | 0.343292          | 0.249441          | 0.377965          | 0.328598          | 0.415691          | 0.433343                                         | 0.400565             | 0.345319          | 0.39913           | 0.393014           | 0.551257                                         | 0.365664          | 0.524075             | 0.48817                                                              | 0.32679           | 0.409656          | 0.552036          | 0.354703          | 0.418927             | 0.348903          | 0.232241          | 0.42800         |
| CA          | 0.549523          | 0.504771          | 0.450596          | 0.334365          | 0.507735          | 0.407018          | 0.543418          | 0.464942                                         | 0.496246             | 0.44533           | 0.468206          | 0.344968           | 0.456771                                         | 0.450045          | 0.504631             | 0.44069                                                              | 0.410707          | 0.453196          | 0.459919          | 0.545819          | 0.519701             | 0.413429          | 0.377604          | 0.49433         |
| CAG         | -0.003684         | 0.02276           | -0.025557         | 0.022018          | 0.010912          | 0.024514          | -0.034525         | -0.026237                                        | 0.028289             | 0.023338          | -0.019872         | -0.027597          | -0.07364                                         | -0.007176         | +0.017301            | 0.013334                                                             | -0.004646         | 0.011745          | 0.023311          | 0.014633          | 0.015303             | -0.018471         | -0.019379         | 0.02295         |
| CAH         | 0.324064          | 0.340098          | 0.220634          | 0.475718          | 0.298567          | 0.249979          | 0.373953          | 0.287879                                         | 0.362118             | 0.332586          | 0.309738          | 0.351571           | 0.309586                                         | 0.334583          | 0.316234             | 0.329159                                                             | 0.236831          | 0.306169          | 0.349887          | 0.295712          | 0.311517             | 0.254185          | 0.288913          | 0.32228         |
| CAM         | 0.53699           | 0.624778          | 0.429512          | 0.310122          | 0.43619           | 0.48486           | 0.463858          | 0.413028                                         | 0.492698             | 0.447058          | 0.544783          | 0.317838           | 0.452579                                         | 0.429352          | 0.461615             | 0.434438                                                             | 0.410534          | 0.624599          | 0.441948          | 0.422347          | 0.454833             | 0.393625          | 0.330634          | 0.49873         |
|             | 0.002100          | 0.457007          | 0.419036          | 0.38005           | 0.426422          | 0.396522          | 0.567561          | 0.459927                                         | 0.52001              | 0.502609          | 0.455607          | 0.44999            | 0.527534                                         | 0.437052          | 0.5027               | 0.500227                                                             | 0.365529          | 0.433750          | 0.677012          | 0.467701          | 0.469040             | 0.964904          | 0.52592           | 0.00000         |

## **Objective: Deep Understanding**

"Deep understanding means knowing, not merely how things behaved yesterday, but also how things will behave under new hypothetical circumstances..."

Judea Pearl, Causality (2009), Cambridge University Press




## **Bayesian Network Learning**

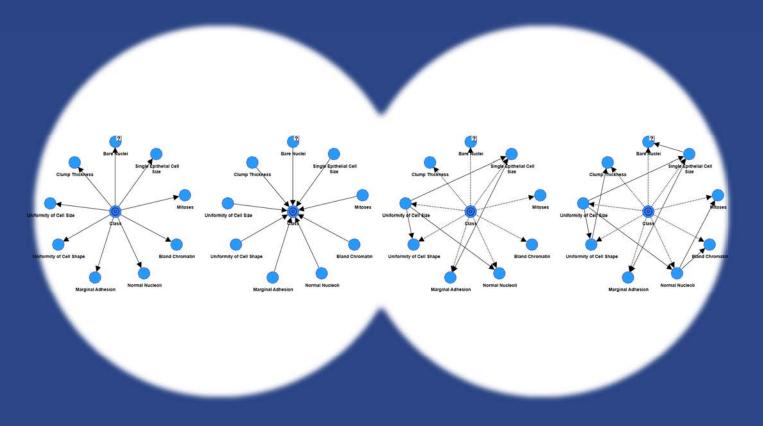


### Objective

• Learn single model for all 51 variables.



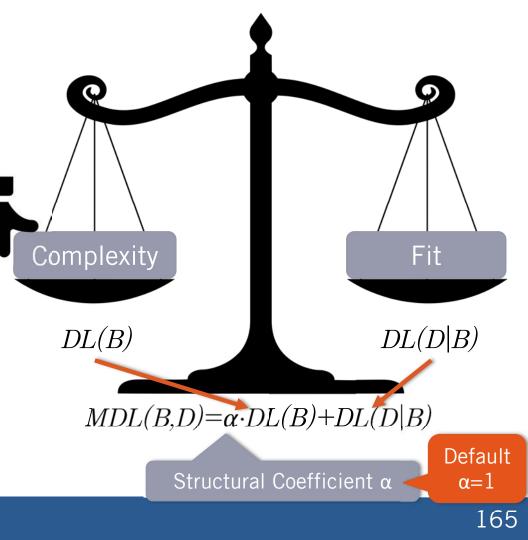
## **Example 4: Exchange-Traded Funds**


#### **BayesiaLab Workflow**

- Data Source:
  - 1,147 Exchange-Traded Funds
  - Timeframe: 2014 2018
  - Daily Flow grouped by 51 investment themes
- Data Import
- Unsupervised Learning
  - SopLEQ (SC=0.35)

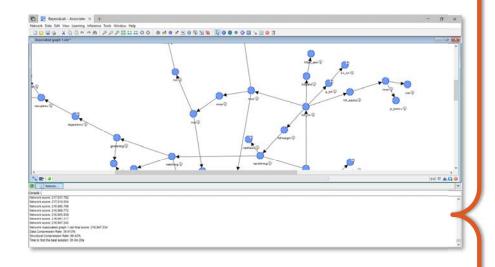
- Alpha-Seeking
- Basic Materials
- Broad Equity
- Consumer Discretionary
- Energy
- Financials
- High Dividend Yield
- Industrials
- Mid Cap
- Natural Resources
  - Preferred Stock
- Technology
- Agency MBS
- Asset-backed
- Broad Agriculture
- Broad Commodities
- Broad Debt
- Broad Energy
- Broad Industrials
- Broad Market
- Broad Municipals
- Broad Sovereign
- Build America Bonds
- Buywrite
- Consumer Staples
- Convertibles

- Crude Oil
- Developed Markets
- Emerging Markets
- Global Macro
- Gold
- Health Care
- High Yield
- Inflation-Protected
- Investment Grade
- Large Cap
- Loans
- Long/Short
- Micro Cap
- Natural Gas
- Real Estate
- Small Cap
- TIPS
- Target Outcome
- Target Risk
- Telecommunications
- Theme
- Treasury
- Utilities
- Volatility
- Broad Precious Metals


## Learning=Searching



## Learning=Searching


#### **Minimum Description Length**

- DL(B) is the number of bits to represent the Bayesian network B (graph and probabilities), and
- DL(D|B) is the number of bits to represent the dataset D given the Bayesian network B (likelihood of the data given the Bayesian network).



## Learning=Searching

#### **Minimum Description Length**



Network score: 217,884.553 Network score: 217,743.338 Network score: 217,610.856 Network score: 217,483.237 Network score: 217,359.875 Network score: 217,241.952 Network score: 217,195.628 Network score: 217,152.903 Network score: 217,113.827 Network score: 217,075.16 Network score: 217,037.782 Network score: 217.010.554 Network score: 216,985.768 Network score: 216,968.772 Network score: 216,955.839 Network score: 216,951.317 Network score: 216,947.242

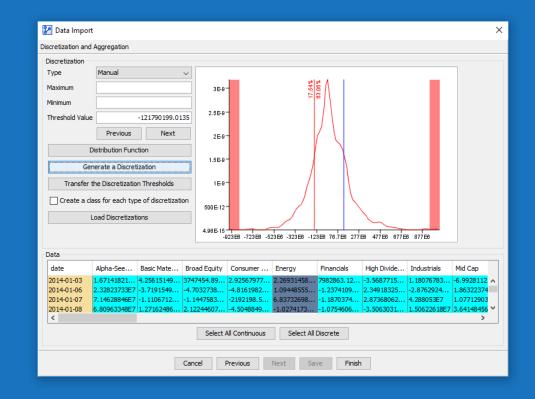
Network Associated graph 1.xbl final score: 216,947.234 Data Compression Rate: 39.913% Structural Compression Rate: 98.42% Time to find the best solution: Oh Om 20s

🗋 🗁

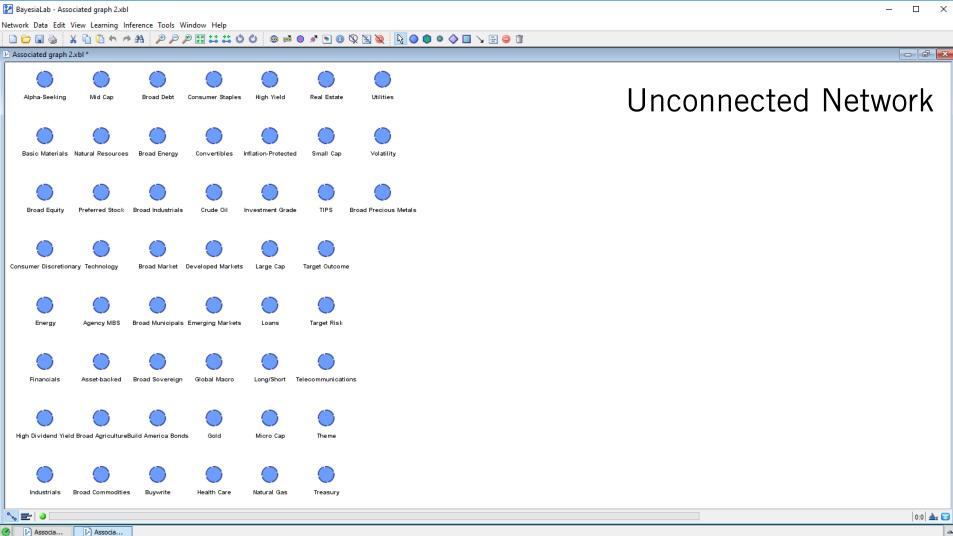
| Tab                                                                                                          | Semicolon 🗸                                                                                                                            | Comma                                                                                                          | Encoding<br>UTF-8                                                                                            |                                                                                                              | ~                                                                                                                    | Options Title Line Character Consider Identical Consecutive separators                                                                                          |                                                                                                               |                                                                                                       |                                                                                              |  |  |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Missing Values N/R NR NC V Remove                                                                            |                                                                                                                                        |                                                                                                                | Filtered Values<br>VF<br>FV<br>N/A                                                                           |                                                                                                              | <b>Add</b>                                                                                                           | as a Unique One Consider Different Consecutive Separators as a Unique One Double Oucte as String Delimiters                                                     |                                                                                                               |                                                                                                       |                                                                                              |  |  |
| Sampling                                                                                                     | Define Sample                                                                                                                          |                                                                                                                | earning/Test<br>Define Le                                                                                    | earning/Test Se                                                                                              | ts                                                                                                                   |                                                                                                                                                                 | as String Delimit                                                                                             |                                                                                                       |                                                                                              |  |  |
| Data<br>date                                                                                                 | Alpha-See                                                                                                                              | Basic Mate                                                                                                     | Broad Equity                                                                                                 | Consumer                                                                                                     | Energy                                                                                                               | Financials                                                                                                                                                      | Hiah Divide                                                                                                   | Industrials                                                                                           | Mid Cap                                                                                      |  |  |
| 2014-01-03                                                                                                   |                                                                                                                                        | 4.25615149                                                                                                     |                                                                                                              | 2.92567977                                                                                                   | Energy<br>2,26931458.                                                                                                |                                                                                                                                                                 | -3.5687715                                                                                                    | 1, 18076783                                                                                           | -6.9928112                                                                                   |  |  |
|                                                                                                              | 2.32823733E7                                                                                                                           | -3.7191549                                                                                                     | -4.7032738                                                                                                   | -4.8161982                                                                                                   | 2.26931458.                                                                                                          |                                                                                                                                                                 | -3.568//15                                                                                                    | -2.8762924                                                                                            | 1.86322374                                                                                   |  |  |
| 2014-01-06                                                                                                   |                                                                                                                                        | 0./171070                                                                                                      | 1.7032730                                                                                                    | 1.0101502                                                                                                    |                                                                                                                      | 1.23/ 109                                                                                                                                                       | 2.34310323                                                                                                    | 2.0/02524                                                                                             | 11.0002207                                                                                   |  |  |
| 2014-01-06                                                                                                   |                                                                                                                                        | -1.1106712                                                                                                     | -1.1447583                                                                                                   | -2192198.5                                                                                                   | 6.83732698                                                                                                           | -1.1870374                                                                                                                                                      | 2.87368062                                                                                                    | 4.288053E7                                                                                            | 1.07712903                                                                                   |  |  |
| 2014-01-06<br>2014-01-07<br>2014-01-08                                                                       | 7.14628846E7<br>6.80963348E7                                                                                                           | -1.1106712                                                                                                     | -1.1447583<br>2.12244607                                                                                     | -2192198.5                                                                                                   | 6.83732698.<br>-1.0274173.                                                                                           |                                                                                                                                                                 | 2.87368062                                                                                                    | 4.288053E7<br>1.50622618E7                                                                            | 1.07712903                                                                                   |  |  |
| 2014-01-07                                                                                                   | 7.14628846E7                                                                                                                           |                                                                                                                |                                                                                                              | -2192198.5<br>-4.5048849<br>1.53903341                                                                       |                                                                                                                      | 1.0754606                                                                                                                                                       | 2.87368062<br>-3.5063031<br>1.36030152                                                                        |                                                                                                       | 3.64148456                                                                                   |  |  |
| 2014-01-07<br>2014-01-08                                                                                     | 7.14628846E7<br>6.80963348E7                                                                                                           | 1.27162486                                                                                                     | 2.12244607                                                                                                   | -4.5048849                                                                                                   | -1.0274173.<br>-5.7833935.                                                                                           | 1.0754606<br>1.45669004                                                                                                                                         | -3.5063031                                                                                                    | 1.50622618E7                                                                                          | 3.64148456<br>1.10950088                                                                     |  |  |
| 2014-01-07<br>2014-01-08<br>2014-01-09                                                                       | 7.14628846E7<br>6.80963348E7<br>2.94467125E7<br>2.08000177                                                                             | 1.27162486<br>-2.2240827                                                                                       | 2.12244607<br>2.16163611<br>-2.8268684                                                                       | -4.5048849<br>1.53903341<br>3.15113699                                                                       | -1.0274173.<br>-5.7833935.                                                                                           | 1.0754606<br>1.45669004<br>1837187.4                                                                                                                            | -3.5063031<br>1.36030152                                                                                      | 1.50622618E7<br>-3.40757E7                                                                            | 3.64148456<br>1.10950088<br>-2.0775073                                                       |  |  |
| 2014-01-07<br>2014-01-08<br>2014-01-09<br>2014-01-10                                                         | 7.14628846E7<br>6.80963348E7<br>2.94467125E7<br>2.08000177                                                                             | 1.27162486<br>-2.2240827<br>-1.7553189                                                                         | 2.12244607<br>2.16163611<br>-2.8268684                                                                       | -4.5048849<br>1.53903341<br>3.15113699<br>-4.8425077                                                         | -1.0274173.<br>-5.7833935.<br>6.31181425.                                                                            | 1.0754606<br>1.45669004<br>1837187.4<br>9.0351591                                                                                                               | -3.5063031<br>1.36030152<br>1.48057282                                                                        | 1.50622618E7<br>-3.40757E7<br>6.6526997E7                                                             |                                                                                              |  |  |
| 2014-01-07<br>2014-01-08<br>2014-01-09<br>2014-01-10<br>2014-01-13                                           | 7.14628846E7<br>6.80963348E7<br>2.94467125E7<br>2.08000177<br>5.26128576E7<br>6.39047645E7                                             | 1.27162486<br>-2.2240827<br>-1.7553189<br>3.81408731                                                           | 2.12244607<br>2.16163611<br>-2.8268684<br>1.32244049                                                         | -4.5048849<br>1.53903341<br>3.15113699<br>-4.8425077<br>-1.6740670                                           | -1.0274173.<br>-5.7833935.<br>6.31181425.<br>-3.5752318.                                                             | 1.0754606<br>1.45669004<br>-1837187.4<br>-9.0351591<br>1.2343967                                                                                                | -3.5063031<br>1.36030152<br>1.48057282<br>6.87103606E7                                                        | 1.50622618E7<br>-3.40757E7<br>6.6526997E7<br>-2.9699316                                               | 3.64148456<br>1.10950088<br>-2.0775073<br>1.76725457<br>-1.8130276                           |  |  |
| 2014-01-07<br>2014-01-08<br>2014-01-09<br>2014-01-10<br>2014-01-13<br>2014-01-14                             | 7.14628846E7<br>6.80963348E7<br>2.94467125E7<br>2.08000177<br>5.26128576E7<br>6.39047645E7<br>3.05083522E7                             | 1.27162486<br>-2.2240827<br>-1.7553189<br>3.81408731<br>-9.5287898                                             | 2.12244607<br>2.16163611<br>-2.8268684<br>1.32244049<br>3.42414841<br>5.06327239                             | -4.5048849<br>1.53903341<br>3.15113699<br>-4.8425077<br>-1.6740670                                           | -1.0274173.<br>-5.7833935.<br>6.31181425.<br>-3.5752318.<br>-1.8308696.                                              | 1.0754606<br>1.45669004<br>1837187.4<br>9.0351591<br>1.2343967<br>1.26363524                                                                                    | -3.5063031<br>1.36030152<br>1.48057282<br>6.87103606E7<br>-2678883.1<br>-2.2437554                            | 1.50622618E7<br>-3.40757E7<br>6.6526997E7<br>-2.9699316<br>8.11018635                                 | 3.64148456<br>1.10950088<br>-2.0775073<br>1.7672545<br>-1.8130276<br>3.66254969              |  |  |
| 2014-01-07<br>2014-01-08<br>2014-01-09<br>2014-01-10<br>2014-01-13<br>2014-01-14<br>2014-01-15               | 7.14628846E7<br>6.80963348E7<br>2.94467125E7<br>2.08000177<br>5.26128576E7<br>6.39047645E7<br>3.05083522E7<br>3.29532277               | 1.27162486<br>-2.2240827<br>-1.7553189<br>3.81408731<br>-9.5287898<br>3.46197686E7<br>-1.5605729               | 2.12244607<br>2.16163611<br>-2.8268684<br>1.32244049<br>3.42414841<br>5.06327239<br>1.20443592               | -4.5048849<br>1.53903341<br>3.15113699<br>-4.8425077<br>-1.6740670<br>-1.4910348<br>-5.7041076               | -1.0274173.<br>-5.7833935.<br>6.31181425.<br>-3.5752318.<br>-1.8308696.<br>1.12024371.<br>1.63868062.                |                                                                                                                                                                 | -3.5063031<br>1.36030152<br>1.48057282<br>6.87103606E7<br>-2678883.1<br>-2.2437554                            | 1.50622618E7<br>-3.40757E7<br>6.6526997E7<br>-2.9699316<br>8.11018635<br>3.49246425E7                 | 3.64148456<br>1.10950088<br>-2.0775073<br>1.7672545<br>-1.8130276<br>3.66254969              |  |  |
| 2014-01-07<br>2014-01-08<br>2014-01-09<br>2014-01-10<br>2014-01-13<br>2014-01-14<br>2014-01-15<br>2014-01-16 | 7.14628846E7<br>6.80963348E7<br>2.94467125E7<br>2.08000177<br>5.26128576E7<br>6.39047645E7<br>3.05083522E7<br>3.29532277<br>3.79610527 | 1.27162486<br>-2.2240827<br>-1.7553189<br>3.81408731<br>-9.5287898<br>3.46197686E7<br>-1.5605729<br>1.09462863 | 2.12244607<br>2.16163611<br>-2.8268684<br>1.32244049<br>3.42414841<br>5.06327239<br>1.20443592<br>7.69883715 | -4.5048849<br>1.53903341<br>3.15113699<br>-4.8425077<br>-1.6740670<br>-1.4910348<br>-5.7041076<br>-2014030.1 | -1.0274173.<br>-5.7833935.<br>6.31181425.<br>-3.5752318.<br>-1.8308696.<br>1.12024371.<br>1.63868062.<br>2.31388936. | -1.0754606           1.45669004           -1837187.4           -9.0351591           -1.2343967           1.26363524           2.5656102188           7.74551196 | -3.5063031<br>1.36030152<br>1.48057282<br>6.87103606E7<br>-2678883.1<br>-2.2437554<br>-4605908.1<br>1856165.8 | 1.50622618E7<br>-3.40757E7<br>6.6526997E7<br>-2.9699316<br>8.11018635<br>3.49246425E7<br>4.69991268E7 | 3.64148456<br>1.10950088<br>-2.0775073<br>1.7672545<br>-1.8130276<br>3.66254969<br>2.2803127 |  |  |

### Data Import Wizard

🗋 🗁


| Type Action              |               |                     |               | Information    |            |            |                          |              |                          |
|--------------------------|---------------|---------------------|---------------|----------------|------------|------------|--------------------------|--------------|--------------------------|
| O Not Distrib            | uted Co       | lumns with Missi    | ng Values     | Number of Ro   | ws 1072    | 100.00%    |                          |              |                          |
| ) Discrete               |               | All not Distributed |               |                | d 0        | 0.00%      |                          |              |                          |
| Obscielle                |               | Airtiot Distributed |               |                | 0          | 0.00%      |                          |              |                          |
| Continuou                | S             | All Discrete        |               |                | 51         | 98.08%     |                          |              |                          |
| O Weight                 |               | All Continuous      |               |                | 1          | 1.92%      |                          |              |                          |
| O Lauria d               |               |                     |               |                |            | 0.00%      |                          |              |                          |
| Learning/T               | est           |                     |               | Missing Values |            |            |                          |              |                          |
| Row Ident                | ifier         |                     |               | Filtered Value | s O        | 0.00%      |                          |              |                          |
| Data                     |               |                     |               |                |            |            |                          |              |                          |
| date                     | Alpha-See     | Basic Mate          | Broad Equity  | Consumer       | Energy     | Financials | High Divide              | Industrials  | Mid Cap                  |
| 2014-01-03               | 1.67141821    |                     | 3747454.89    |                | 2.26931458 | 7982863.12 |                          | 1.18076783   | -6.9928112               |
| 2014-01-06               |               | -3.7191549          | -4.7032738    | -4.8161982     | 1.09448555 | -1.2374109 |                          | -2.8762924   | 1.86322374               |
| 2014-01-07               |               | -1.1106712          | -1.1447583    |                | 6.83732698 | -1.1870374 |                          | 4.288053E7   | 1.07712903               |
| 2014-01-08               |               | 1.27162486          |               |                | -1.0274173 | -1.0754606 |                          | 1.50622618E7 |                          |
| 2014-01-09               |               |                     | 2.16163611    | 1.53903341     |            | 1.45669004 |                          | -3.40757E7   | 1.10950088               |
| 2014-01-10               |               | -1.7553189          | -2.8268684    |                |            | -1837187.4 |                          | 6.6526997E7  | -2.0775073               |
| 2014-01-13               |               |                     | 1.32244049    |                |            | -9.0351591 |                          |              | 1.76725457               |
| 2014-01-14               |               |                     | 3.42414841    |                |            | -1.2343967 |                          |              | -1.8130276               |
| 2014-01-15               | STODDODDELLE? | 3.46197686E7        | 5100527255111 |                | 1.12024371 |            |                          | 3.49246425E7 |                          |
| 2014-01-16               |               |                     | 1.20443592    |                |            |            | 3 -4605908.1             | 4.69991268E7 |                          |
| 2014-01-17<br>2014-01-21 |               | 1.09462863          | 4.52482046    |                | 2.31388936 |            | . 1856165.8<br>2.0783468 | 1.14175604   | -1.5239792<br>2.84883845 |
| 2014-01-21 2014-01-22    |               | -3.6221198          |               |                |            |            | 6.51588193               |              |                          |
| 2014-01-22               |               |                     |               | -1.891/419     |            |            |                          |              | 2.64643989               |
| <                        | 2.9303733E7   | 1.10013082          | 11.49540475   | -9.0401377     | -1.0220010 | -4.4090419 | -9/62/20./               | 3.7342737E7  | ×                        |

### Variable Type Definition


🛂 Data Import Х Data Selection and Filtering Missing Value Processing Information Number of Rows 1072 100.00% Filter OR OR Not Distributed 0 0.00% Discrete 0 0.00% O AND Continuous 51 98.08% Replace by : Others 1 1.92% Value Missing Values 0 0.00% Mean/Modal 0.00% Filtered Values 0 Infer Static Imputation Select Values OR Delete Selections O Dynamic Imputation AND **Display Selections** Structural EM Entropy-Based Static Imputation Entropy-Based Dynamic Imputation Data date Alpha-S... 🔻 Basic M... 🔻 Broad E... 💌 Consum... 💌 Energy 💌 Financials 💌 High Div... 💌 Industrials 💌 Mid Cap 💌 2014-01-03 1.67141821... 4.25615149... 3747454.89.. . 2.92567977.. 2.26931458 7982863.12... -3.5687715... 1.18076783... -6.9928112 2.32823733E7 -3.7191549... -4.7032738... -4.8161982... 1.09448555... -1.2374109... 2.34918325... -2.8762924... 1.86322374 2014-01-06 2014-01-07 7.14628846E7 -1.1106712... -1.1447583... -2192198.5... 6.83732698... -1.1870374... 2.87368062... 4.288053E7 1.07712903 2014-01-08 6.80963348E7 1.27162486... 2.12244607... -4.5048849... -1.0274173... -1.0754606... -3.5063031... 1.50622618E7 3.64148456 2014-01-09 2.94467125E7 -2.2240827... 2.16163611... 1.53903341... -5.7833935... 1.45669004... 1.36030152... -3.40757E7 1.10950088 ~ < > Select All Continuous Select All Discrete Cancel Previous Next Save

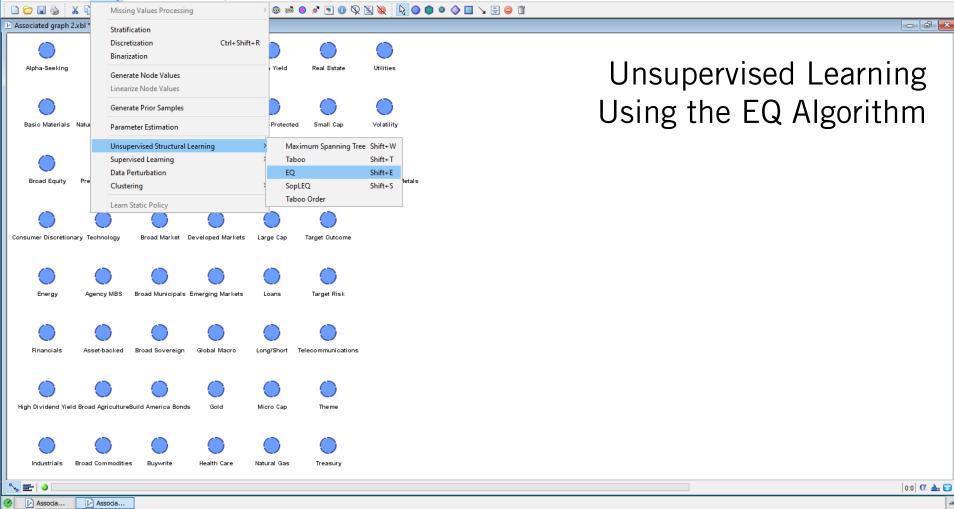
### Missing Values Processing

🗋 🗁



#### Discretization




Associa...

Δ

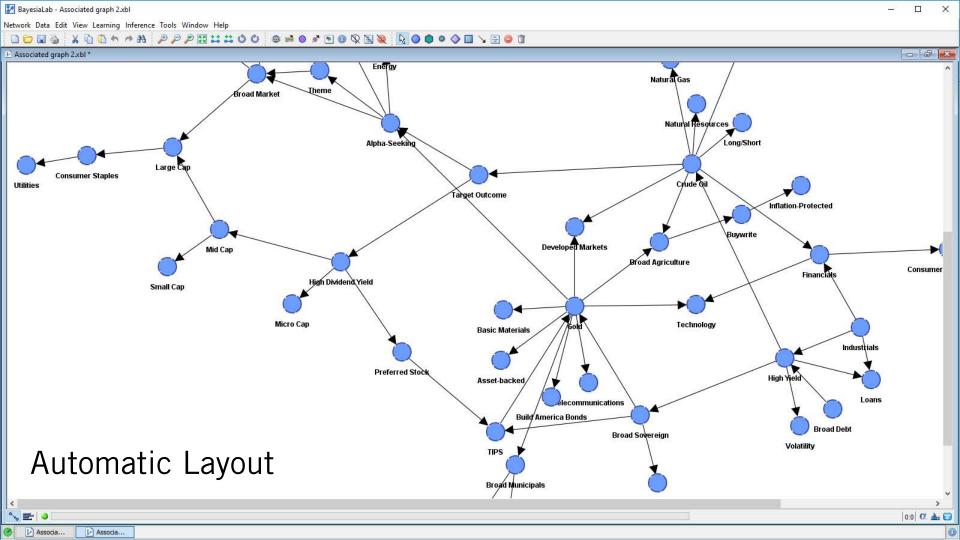


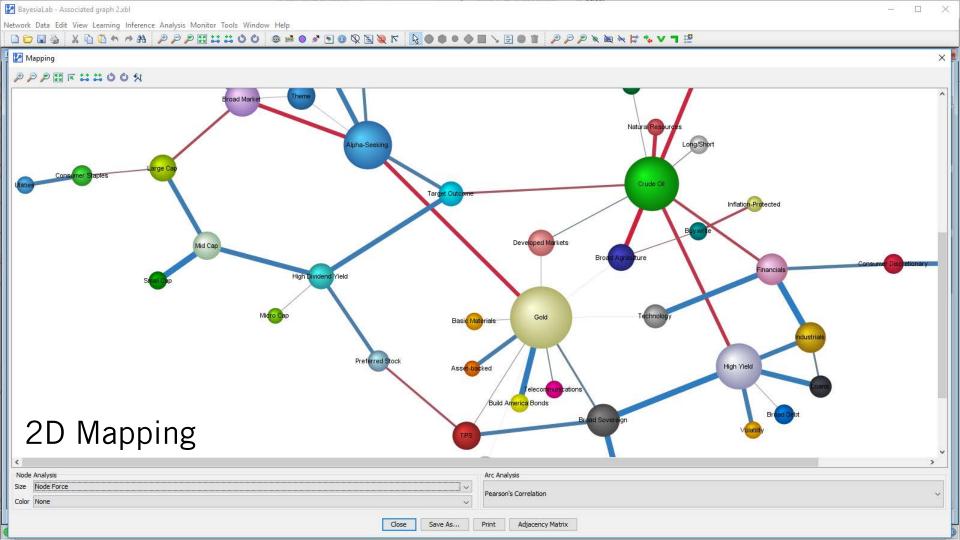
Network Data Edit View Learning Inference Tools Window Help

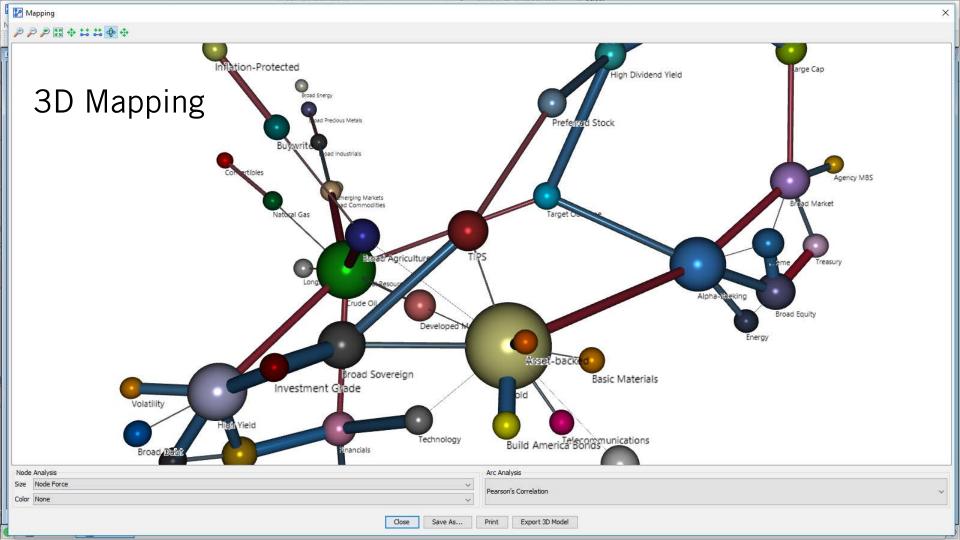
 $\Delta$ 

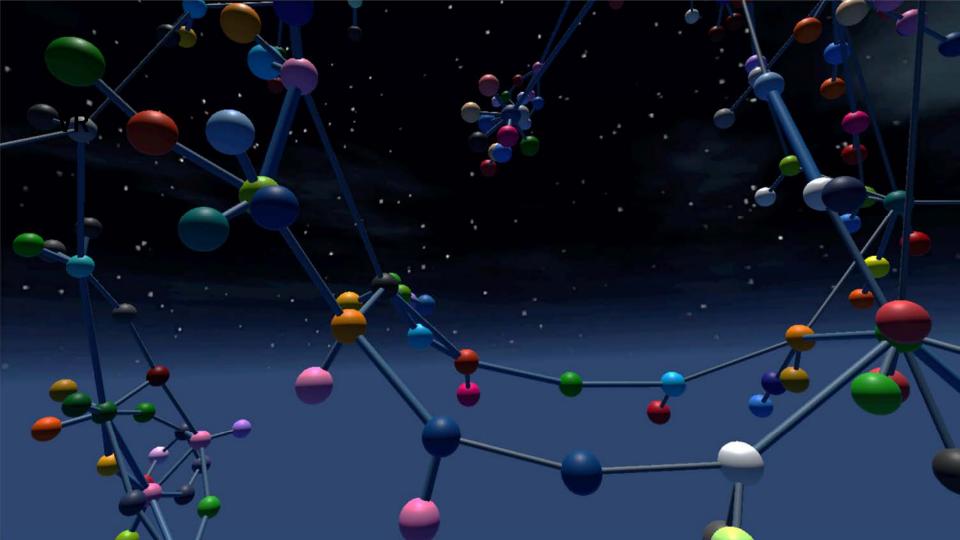


Network Data Edit View Learning Inference Analysis Monitor Tools Window Help


#### □ 🗁 🖫 🎍 X 🖞 🖞 や か 品 タ タ タ 登 🗮 😂 🗰 🎱 ダ 🔹 🗢 🖉 🖉 💿 ダ 💽 🐨 🖗 🖗 🖗 🖗 🖗 🖗 🖗 🖗 👘 🖓 🖾 🗮 🖓 🖉 🐄 😫 🌾 🔽 🦷


#### - F X Associated graph 2.xbl \* Joint Probability: 100.00% Log-Loss: 0 Cases: 1.072 Total Value: 1,148,603,364.345 Mil Cap Alpha eyyna Broad Debt Consumer Staples HUGH Yield Real Estate Utilities Mean Value: 22,521,634.595 Large Cap Mean: 2.12E8 Dev: 2.41E9 Value: 212309206.733 Financials Mean: 2.64E7 Dev: 2.79E8 Value: 26405631.273 Technology Mean: 1.74E7 Dev: 1.78E8 Value: 17431867.829 <=-7792257 18.29% <=-1259778 17.75% <=-7263 25.53% <=98153 50.16% <=13078548 58.58% <=12898261 58.96% Volatility Basic Naterials Natural Resources Broad Energy Convertibles / Inflation Protected Small Cap >130785482 >128982612. >981537 24.32% 23.13% 23.29% Alpha-Seeking Mean: 620238,203 Dev: 50867986.287 Value: 620238,203 High Dividend Yield Mean: 3.49E7 Dev: 2.94E8 Value: 34892604.038 Agency MBS Mean: 1.02E7 Dev: 3.99E7 Value: 10154047.087 27.15% <=-8518004.8 13.82% <=-4924546 8.60% <=-6941 Broad Industrials TIPS Broad Equity tenfed Stock o%uda∖loii∕ Stonent Grade Broad Precious Metals 42.62% <=6698481.6 63.59% <=84228003.2 64.80% <=15723 >84228003.2 >157230 30.23% >6698481 6 22.58% 26.60% Basic Materials Industrials Asset-backed Mean: 9.52E6 Dev: 1.47E8 Value: 9519560.941 Mean: 1.08E7 Dev: 1.33E8 Value: 10772038.206 Mean: 157919.909 Dev: 2611205. Value: 157919.909 Technology Developed Markets Foad Market Consumer Discretionary <=-4683420. 94.53% <=12228 Large Cap Target Outcome 17.46% <=-5514674. 27.24% 51.48% <=78970664. 3.29% <=30347 63.49% <=75706016. 2.18% >303470 19.05% >75706016.. 21.28% >78970664.. Broad Equity Mean: 3.23E8 Dev: 8.49E8 Value: 323302403.974 Mid Cap Broad Agriculture Mean: -31866.441 Dev: 5302705.3 Mean: 5.25E7 Dev: 4.40E8 Value: 52524807.362 Broad Municipals Epigeran Market Agenav MBS Target Risk Value: -31866.441 Energy / oans 16.90% <=-7324353. 14.66% <=-1307263. 7.04% <=-2834 86 75% 69 75% <=86679947 61 73% <=14983082 <=72642 13.35% >866799478 >149830825 6.22% >726424 23.61% Consumer Discretionary Mean: 1.05E6 Dev: 1.48E8 Value: 1047617.721 Natural Resources Mean: 449444.288 Dev: 24318412.510 Value: 449444.288 Broad Commodities Financials Globa Mean: 388939.051 Dev: 22361506 ad Sovereign Asset/backed Long/Shart Telecommunications Value: 388939.051 23.99% <=-6601776. 22.59% <=-4574185 12.52% <=-5876 48.39% <=51220443. 52.22% <=7877495.75 74.13% <=64820 >648206 27.61% >51220443. 25.19% >7877495.75 13.36% Preferred Stock Mean: 1.37E7 Dev: 3.59E7 Value: 13705060.425 High Dividend Yield Broad Agriculture Build America Bond Gold Milero Cap Theme Broad Debt Mean: 8.25E7 Dev: 1.58E8 Energy Mean: 2.27E7 Dev: 1.92E8 Value: 22700681.669 Value: 82478142.524 17.55% <=-1217901 <=-5857240 <=-1658 15.22% 11.21% 63.07% <=15528400 61.07% <=29331080 63.31% <=12616 >155284005 >29331080 25.47% >126164 19.38% 23.70% Health Care Natural Gas Industrials Broad Commodities Buywrite Treasury < > < 0:0 🔍 📥 🛜 **=** 0


П


×

Associa... Associa...











Wells Fargo

American Express Co

#### SLM Corporation

.

.

Gen

Capital One Financial

Morgan Stanley

E-Trade

Goldman Sachs Group

2

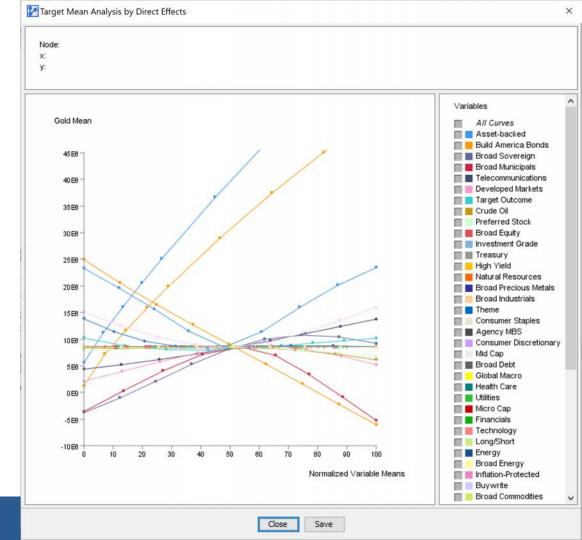
Allegheny Technologies Inc

## Cliffs Natural Resources

ort-McMoran Cp & Gld

Corp. (Hidg. Co.)

United States Steel Corp.


Alcoa Inc Nucor Corp.

Titanium Metals Corp

AK Steel Hidg Corp

ETF

### Target Mean Analysis (Direct Effect)

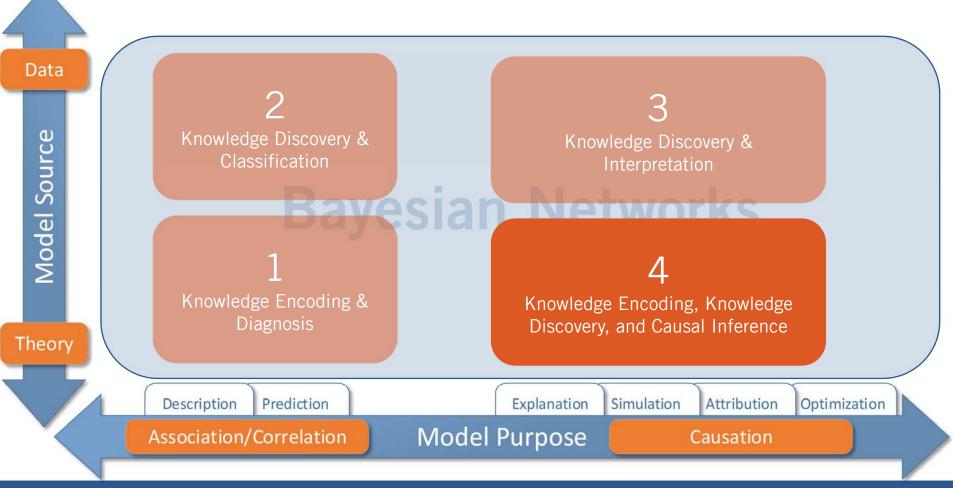


## **Anomaly Detection**

#### The Curse of Dimensionality

- "...as dimensionality increases, the distance to the nearest data point approaches the distance to the farthest data point."
- In other words, the contrast in distances of different data points becomes nonexistent. For high dimensional data sets, this means using outlier detection methods that are based on nearest neighbor will lead to outlier scores that are indistinguishable.

## **Anomaly Detection**


#### **Anomaly Detection with Bayesian Networks**

- With a Bayesian network, we can avoid the problem of the nearest/farthest distance measure, which becomes unreliable in higher dimensions.
- For any new observation, we can compute its likelihood given the network. This tells us how probable or improbable an observation is.



# Where is the Artificial Intelligence here?

## Finding a single model among one quadrillion possible models.







## **Countering Anti-American Attitudes in Germany**





## **Introductory Example**

### **Telephone Survey**

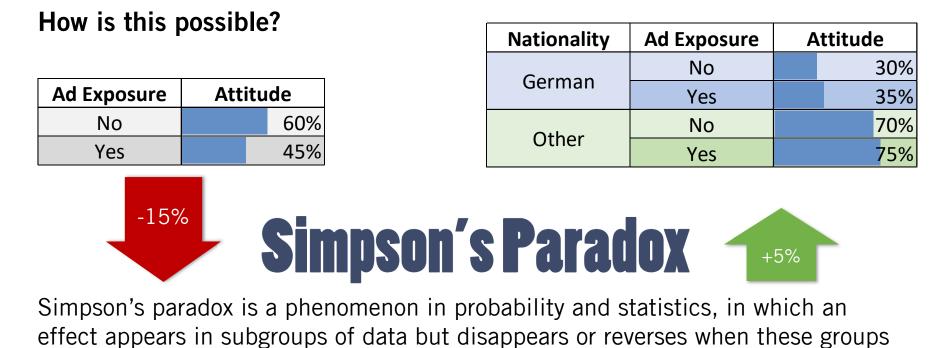
 Afterwards, a market research firm conducts a telephone survey of 1,000 adults to understand the effect of the promotion on attitudes.

|    | Ad Exposure | Nationality | Website Visit | Attitude |
|----|-------------|-------------|---------------|----------|
|    | 0           | 1           | 0             | 0        |
|    | 0           | 0           | 1             | 1        |
|    | 0           | 1           | 0             | 0        |
|    | 0           | 0           | 0             | 0        |
| าน | 1           | 1           | 0             | 1        |
| еу |             |             | 0             | 0        |
|    | 0000000     |             | 1             | 1        |
|    |             | <b>2</b>    | 1             | 0        |
|    |             | = • L       | •             | •        |
|    |             |             | 1             | 0        |
|    |             |             |               |          |
|    |             |             | Observatio    | nal Data |
|    |             |             |               |          |

#### Analyzing the survey with a cross-tab...

| Ad Exposure | Nationality | Website Visit | Attitude |
|-------------|-------------|---------------|----------|
| 0           | 1           | 0             | 0        |
| 0           | 0           | 1             | 1        |
| 0           | 1           | 0             | 0        |
| 0           | 0           | 0             | 0        |
| 1           | 1           | 0             | 1        |
| 1           | 1           | 0             | 0        |
| 1           | 0           | 1             | 1        |
| 0           | 1           | 1             | 0        |
| : :         |             | •             |          |
| 0           | 1           | 1             | 0        |

| Ad Exposure | Attitude |  |  |
|-------------|----------|--|--|
| No          | 60%      |  |  |
| Yes         | 45       |  |  |




However, grouping the survey data by Gender reveals:

| Ad Exposure | Nationality | Website Visit | Attitude |
|-------------|-------------|---------------|----------|
| 0           | 1           | 0             | 0        |
| 0           | 0           | 1             | 1        |
| 0           | 1           | 0             | 0        |
| 0           | 0           | 0             | 0        |
| 1           | 1           | 0             | 1        |
| 1           | 1           | 0             | 0        |
| 1           | 0           | 1             | 1        |
| 0           | 1           | 1             | 0        |
| :           | •           |               |          |
| 0           | 1           | 1             | 0        |

| Nationality | Ad Exposure | Attitude |                   |
|-------------|-------------|----------|-------------------|
| Cormon      | No          |          | 30%               |
| German      | Yes         |          | 35%               |
| Other       | No          |          | <mark>70%</mark>  |
| Other       | Yes         |          | 7 <mark>5%</mark> |





192

#### BayesiaLab.com

are combined.

#### Grouping the data by Website Visit shows:

| Ad Exposure | Nationality | Website Visit | Attitude |  |
|-------------|-------------|---------------|----------|--|
| 0           | 1           | 0             | 0        |  |
| 0           | 0           | 1             | 1        |  |
| 0           | 1           | 0             | 0        |  |
| 0           | 0           | 0             | 0        |  |
| 1           | 1           | 0             | 1        |  |
| 1           | 1           | 0             | 0        |  |
| 1           | 0           | 1             | 1        |  |
| 0           | 1           | 1             | 0        |  |
| :           | :           |               | •        |  |
| 0           | 1           | 1             | 0        |  |

| Website Visit | Ad Exposure | Attitude |
|---------------|-------------|----------|
| Ne            | No          | 60%      |
| No            | Yes         | 50%      |
| Vac           | No          | 60%      |
| Yes           | Yes         | 30%      |



#### Finally, grouping the data by Gender and Test Drive reveals:

| Ad Exposure | Nationality | Website Visit | Attitude |
|-------------|-------------|---------------|----------|
| 0           | 1           | 0             | 0        |
| 0           | 0           | 1             | 1        |
| 0           | 1           | 0             | 0        |
| 0           | 0           | 0             | 0        |
| 1           | 1           | 0             | 1        |
| 1           | 1           | 0             | 0        |
| 1           | 0           | 1             | 1        |
| 0           | 1           | 1             | 0        |
| :           | •           | :             | :        |
| 0           | 1           | 1             | 0        |

|  | Website Visit | Nationality | Ad Exposure | A | ttitude           |   |       |
|--|---------------|-------------|-------------|---|-------------------|---|-------|
|  |               | Cormon      | No          |   | 30%               |   |       |
|  | No            | German      | Yes         |   | 40%               | - | 1.000 |
|  | No            | Other       | No          |   | 70%               |   | +10%  |
|  |               |             | Yes         |   | 8 <mark>0%</mark> |   |       |
|  |               | German      | No          |   | 30%               |   |       |
|  | Yes           | German      | Yes         |   | 20%               |   | 1.00/ |
|  |               | Other       | No          |   | 70%               |   | -10%  |
|  |               | Other       | Yes         |   | 60%               |   |       |

## So, what's the advertising effect?

| Website Visit | Nationality  | Ad Exposure | Attitude          | Nationality | Ad Exposure | Attitude |
|---------------|--------------|-------------|-------------------|-------------|-------------|----------|
|               | German       | No          | 30%               | German      | No          | 30%      |
| No            | No Other     | Yes         | 40%               | German      | +0.05       | 35%      |
| NO            |              | No          | 70%               | Other       | INU         | /0%      |
|               | $\sim 0$     | Yes         | 8 <mark>0%</mark> | other       | Yes         | 75%      |
|               | German       | No          | 30%               |             |             |          |
| Yes           | ociman       | Yes         | 20%               |             |             |          |
| 105           | Other        | No          | 70%               |             |             |          |
|               | other        | Yes         | 60%               |             | Ad Exposure | Attitude |
| Website Visit | Ad Exposure  | A++         |                   |             | KE          |          |
| No            | <sup>№</sup> | 60%<br>50%  |                   |             |             |          |
| Yes           | Yes          | 60%<br>30%  |                   |             |             |          |
|               |              |             |                   |             |             |          |
| BayesiaLat    | o.com        |             |                   |             |             | 195      |

#### RUSSELL GLASS · SEAN CALLAHAN

THE

Data Driven

THE DATA-DRIVEN

Creating a Data Cr

5 Steps To Powering Data Driven Decision Makir

**GET #DATADRIVEN** 

Data

driven

decisions

**Data-Driven** 

increasing sales with DATA - DRIVEN MARKETING

\$

**Data-Driven** 

Marketing

**DataDriven** 

\$

DATA-DRIVEN decisions in a

FORTUNE 500

\$

**Decision-Making** 

loginradius

\$

\$

MAKING DATA-DRIVEN DECISIONS

**BUSINESS** 

with +ableau + 🞇

## **Observational vs. Causal Inference**

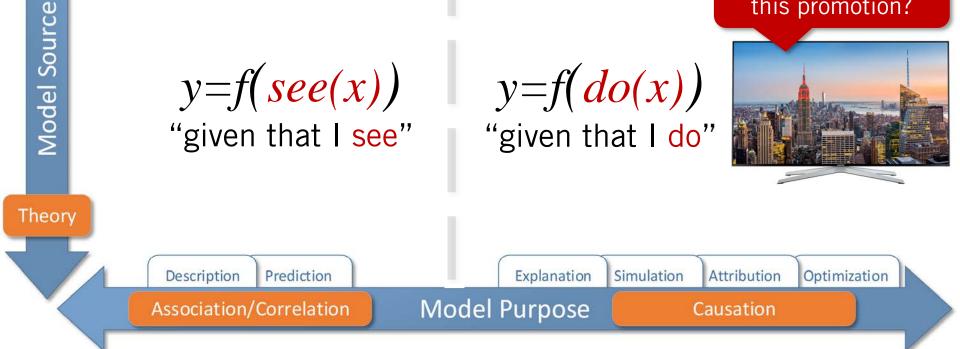
**Observational Inference (Prediction)** 

$$y=f(see(x))$$

"given that I see"

**Causal Inference (Intervention)** 

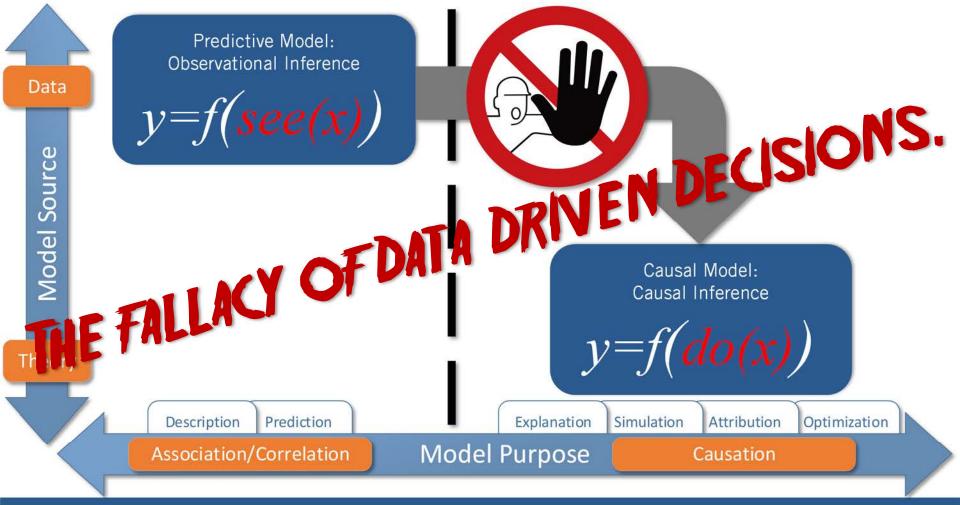
$$y=f(do(x))$$


"given that I do"

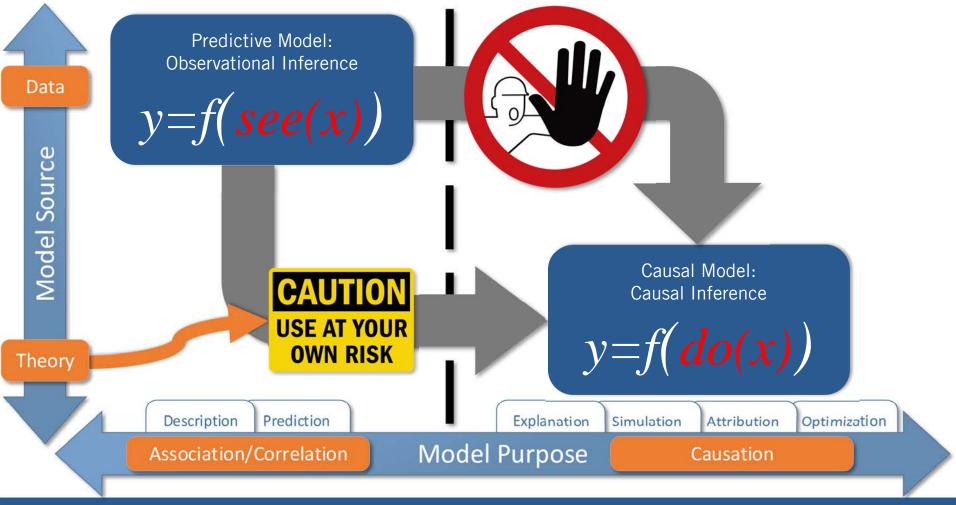
y = f(x)

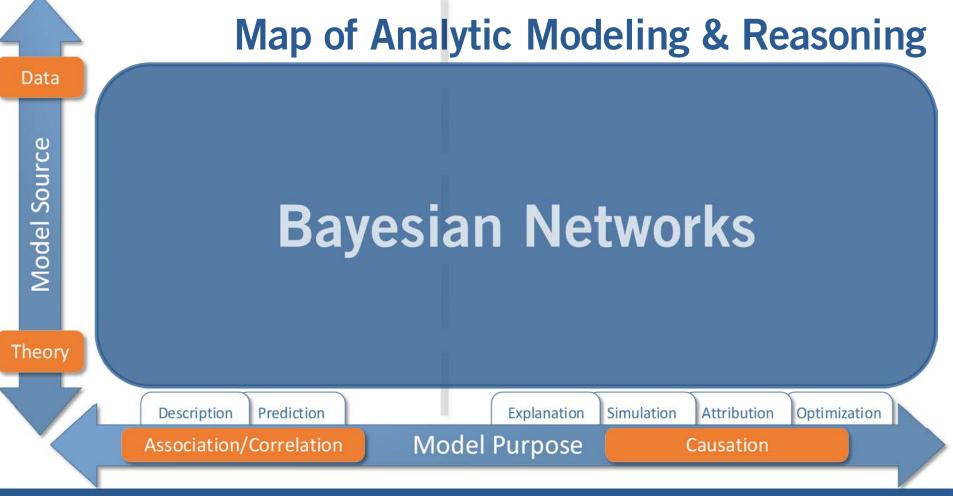
ambiguous

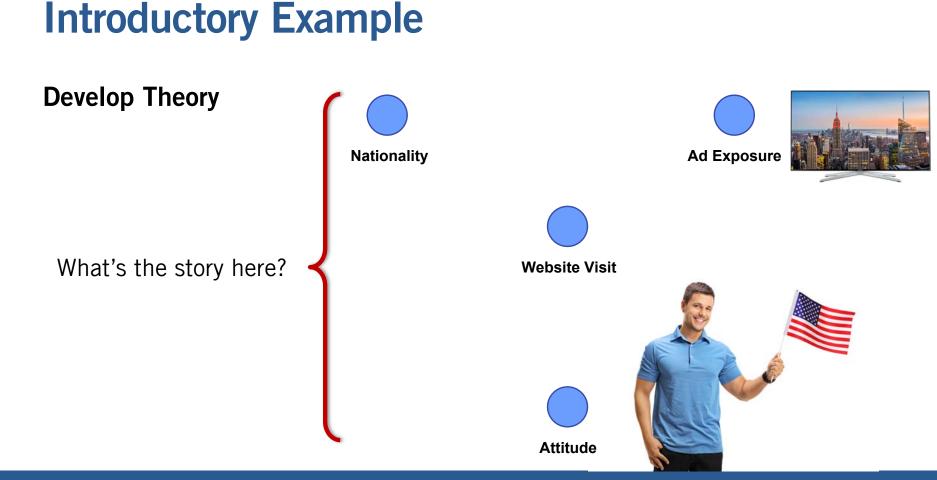
## Map of Analytic Modeling & Reasoning


Was it good to "do" this promotion?



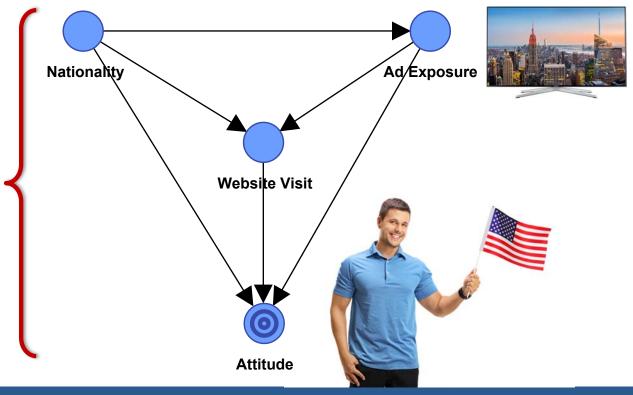

#### BayesiaLab.com


Data





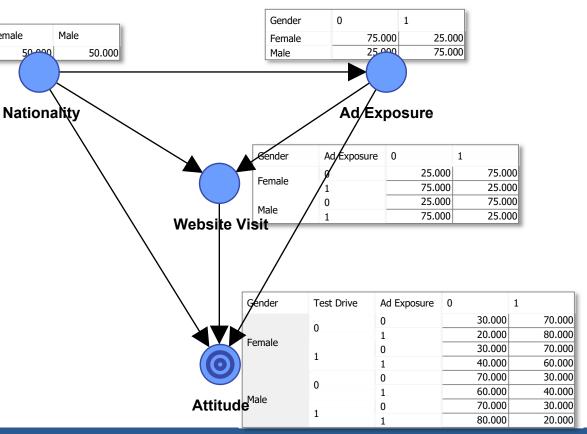

# Once upon a time...







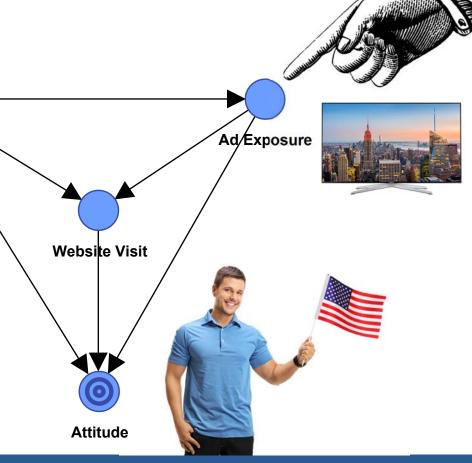

**Our Theory!** 

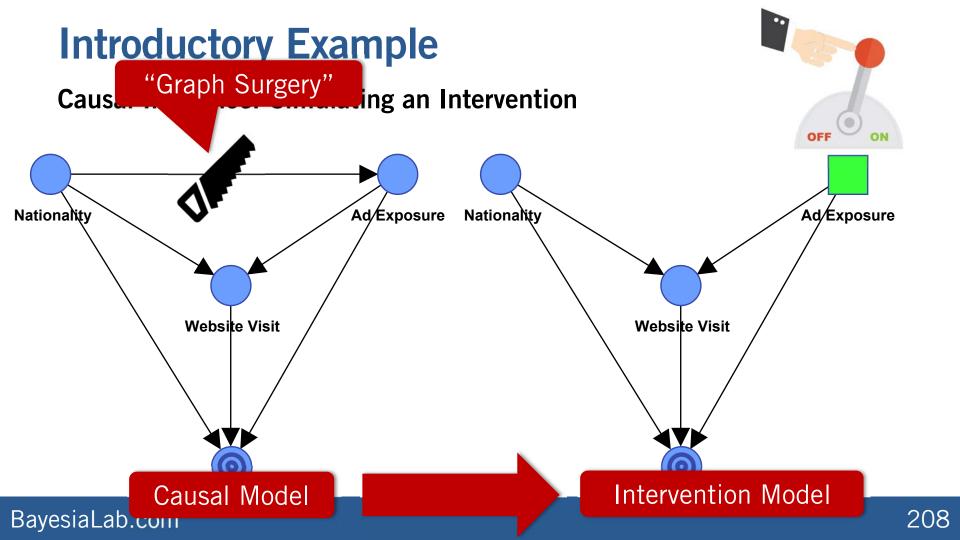

That's the story! Now we have the qualitative part of a causal Bayesian network.

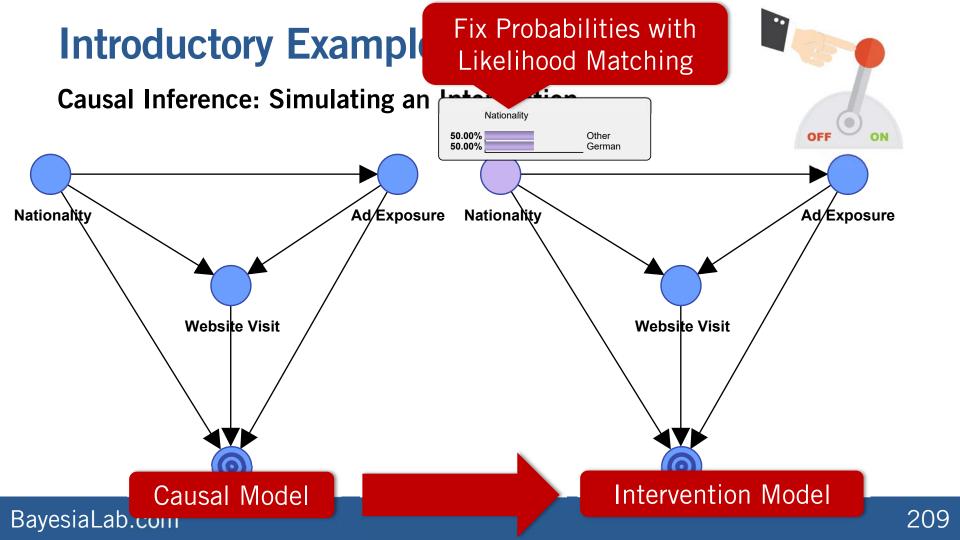


Female

#### "Parameters"

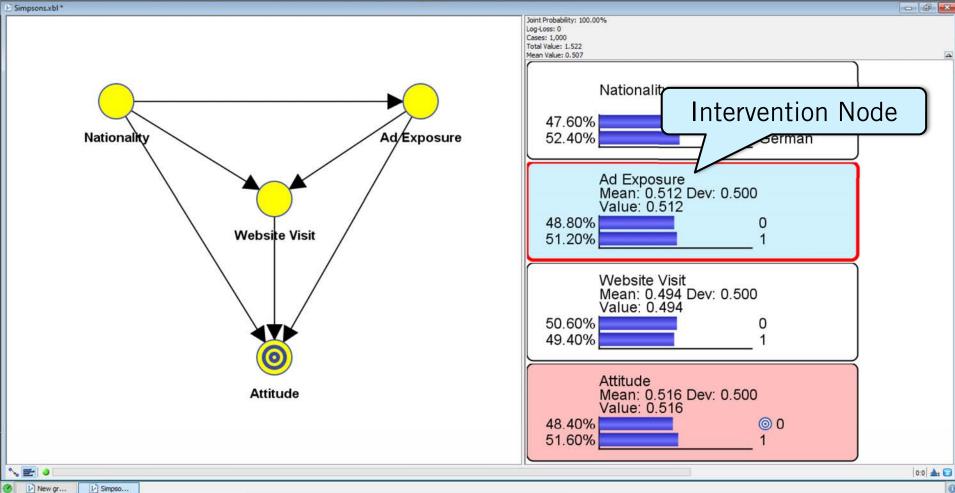

- We can estimate the quantitative part of the network from the survey data.
- As a result, we have a Bayesian network, which we can use for inference.





lion

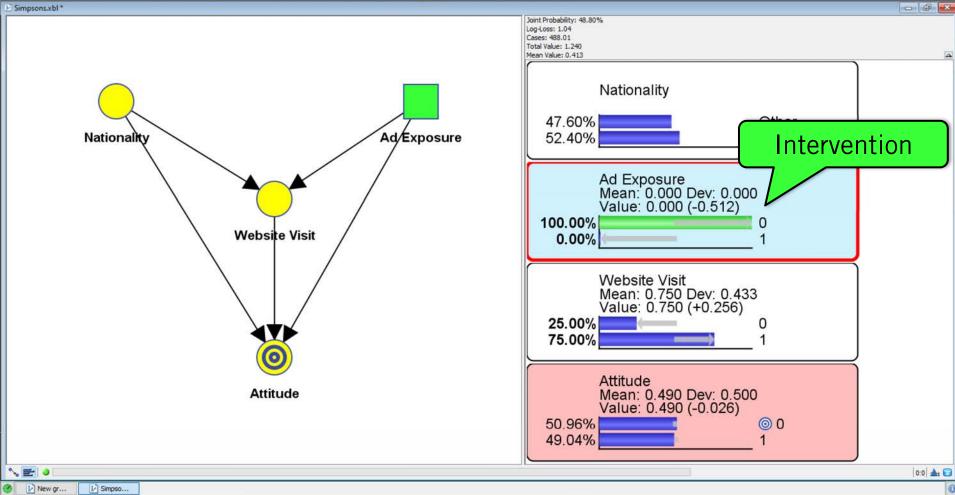
Our "Model of the World"

- How can we obtain the effect of Ad Exposure?
- With this causal Bayesian network, we can simulate an intervention to estimate the causal effect.



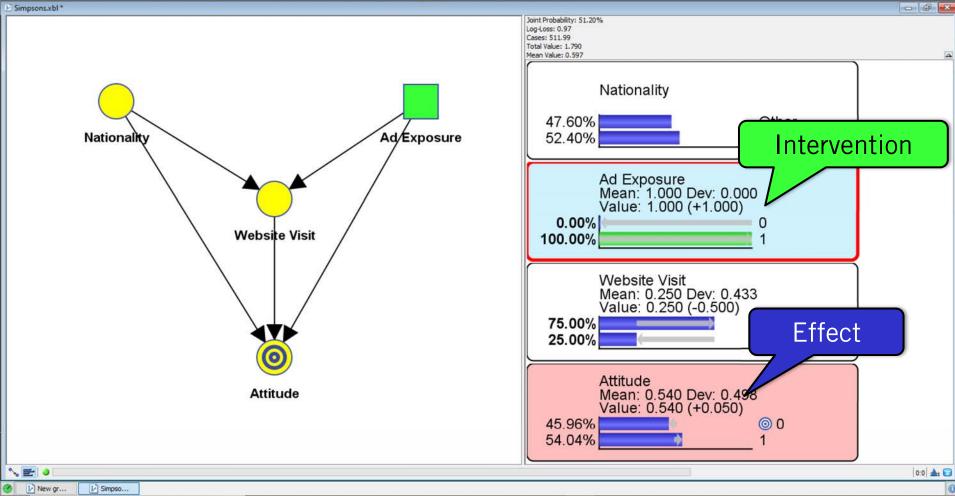






🔀 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Presentations\2018-09-11 BN-ISR Arlington\Causality\Simpsons.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help




🔀 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Presentations\2018-09-11 BN-ISR Arlington\Causality\Simpsons.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

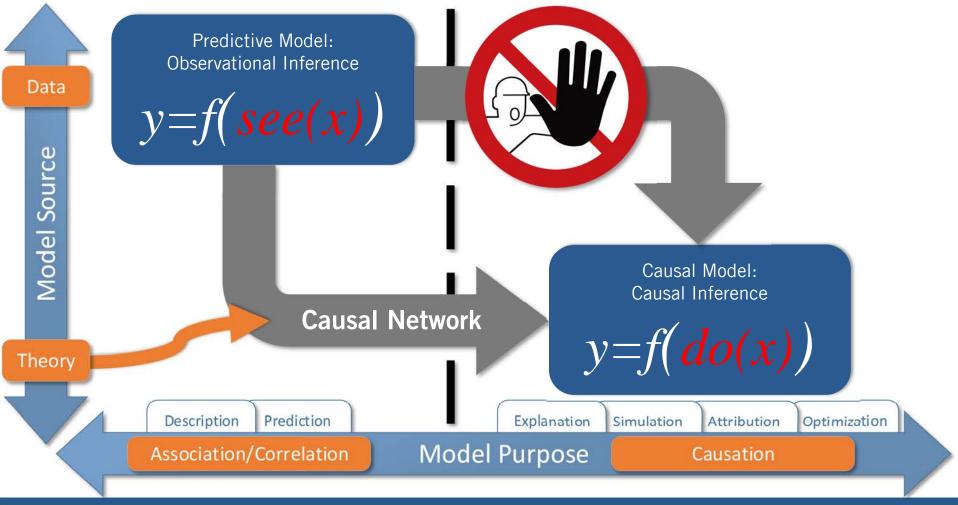


🔀 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Presentations\2018-09-11 BN-ISR Arlington\Causality\Simpsons.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help



## So, what's the advertig


| Website Visit | Nationality | Ad Exposure | Attitude |
|---------------|-------------|-------------|----------|
|               | Cormon      | No          | 30%      |
| No            | German      | Yes         | 40%      |
| No            | Other       | No          | 70%      |
|               |             | Yes         | 80%      |
| Yes           | $\sim 0$    | No          | 30%      |
|               | German      | Yes         | 20%      |
|               | Other       | No          | 70       |
|               | Other       | Yes         | F        |

| Website Visit | Ad Exposure | Attitude |
|---------------|-------------|----------|
| No            | No          | 60%      |
| No            | -0.2        | 50%      |
| Yes           |             | 60%      |
| res           | Yes         | 30%      |

| Nationality | Ad Exposure | A | Attitude          |
|-------------|-------------|---|-------------------|
| Cormon      | No          |   | 30%               |
| German      | +0.0        | 5 | 35%               |
| Other       |             |   | 70%               |
| Other       | Yes         |   | 7 <mark>5%</mark> |

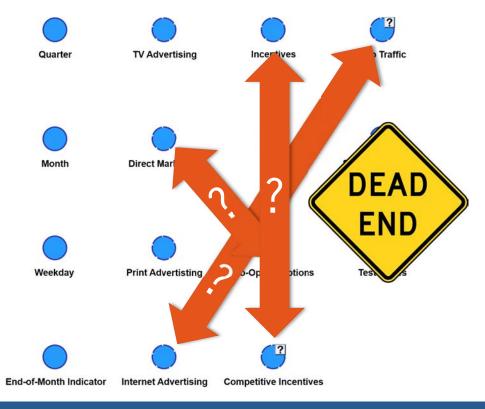
effect?

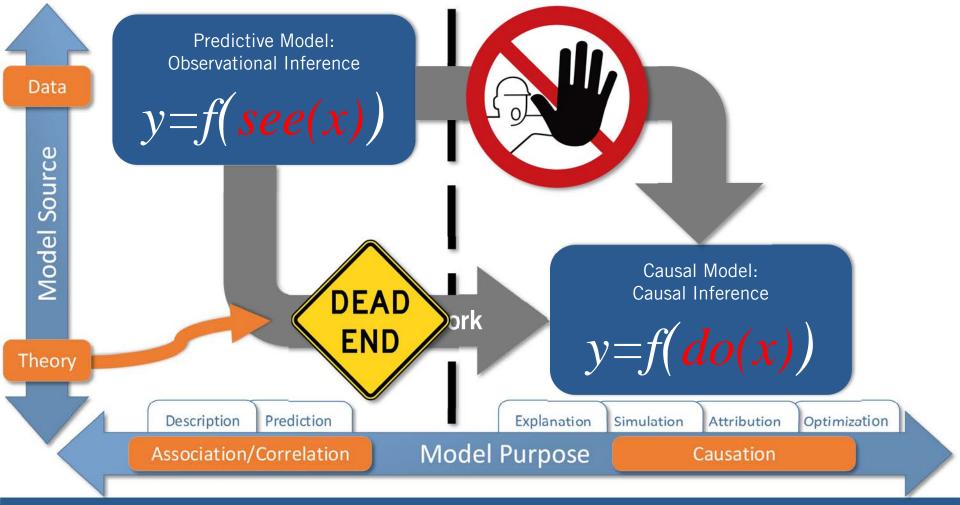
| Ad | Expos | ure | Atti | tu | de  |
|----|-------|-----|------|----|-----|
|    | No    |     | 1 5  |    | 60% |
|    | Yes   | =0  | -15  |    | 45% |





# Where is the Artificial Intelligence here?


## No Artificial Intelligence. Here, we need human intelligence!




## **Resource Allocation Optimization**

#### **Causal Assumptions?**

- Recall: Causal inference requires causal assumptions, e.g., a causal networks!
- But, given the number of variables, there are 2.38×10<sup>41</sup> possible causal network graphs!
- Causal directions are not always obvious.







# We need a different kind of theory

## **Disjunctive Cause Criterion**



#### NIH Public Access Author Manuscript

Biometrics. Author manuscript; available in PMC 2012 December 1.

Published in final edited form as: Biometrics. 2011 December ; 67(4): 1406–1413. doi:10.1111/j.1541-0420.2011.01619.x.

#### A new criterion for confounder selection

#### Tyler J. VanderWeele and

Departments of Epidemiology and Biostatistics, Harvard School of Public Health 677 Huntington Avenue, Boston, MA 02115, Phone: 617-432-7855; Fax: 617-4321884

#### Ilya Shpitser

Department of Epidemiology, Harvard School of Public Health 677 Huntington Avenue, Boston, MA 02115

Tyler J. VanderWeele: tvanderw@hsph.harvard.edu

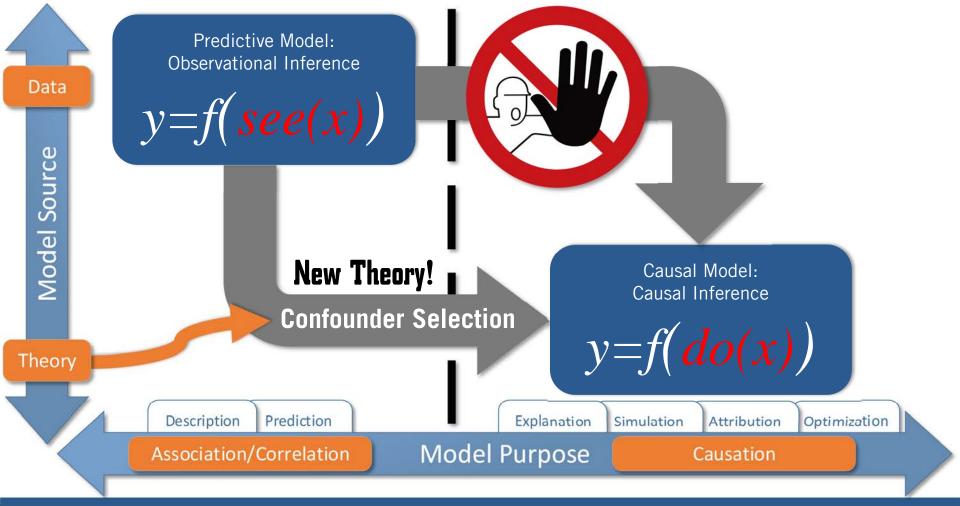
#### Abstract

We propose a new criterion for confounder selection when the underlying causal structure is unknown and only limited knowledge is available. We assume all covariates being considered are pretreatment variables and that for each covariate it is known (i) whether the covariate is a cause of treatment, and (ii) whether the covariate is a cause of the outcome. The causal relationships the covariates have with one another is assumed unknown. We propose that control be made for any covariate that is either a cause of treatment or of the outcome or both. We show that irrespective of the actual underlying causal structure, if any subset of the observed covariates suffices to control

220

NIH-PA Auti

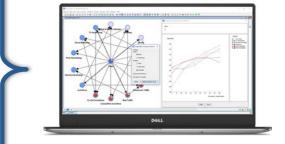
## **Disjunctive Cause Criterion**


#### VanderWeele and Shpitser (2011)

 "We propose that control be made for any [pre-treatment]
 covariate that is either a cause of treatment or of the outcome or both."
 Advertisement

Implementation in BayesiaLab:
 Likelihood Matching on Confounders in
 Direct Effects Analysis
 → Causal Effect, i.e., the Advertising Effect

## IMPORTANT ASSUMPTION: NO UNOBSERVED CONFOUNDERS


Sales



## **Resource Allocation Optimization**

#### **Proposed Workflow**

- Import historical sales and marketing data.
- Machine-learn a predictive model with BayesiaLab.
- Determine Confounders vs. Non-Confounders, using the Disjunctive Cause Criterion.
- Estimate and evaluate **Direct Effects** response curves.
- Introduce Function Node and assign media costs.
- Perform Genetic Target Optimization.
- Apply Network Temporalization.
- Add **Constraint Nodes** between t and t-1 marketing variables.
- Perform Genetic Target Optimization on dynamic network.



**All Data is Synthetic** 

🗋 🗁

| Separators  Tab Semicolon Comma Space Other Missing Values N/R NR NC Sampling Define Sample |                                              |                                                                          | Encoding<br>UTF-8                                                                                   |                                                                                                              |                                                                                  | Options Title Line End of Line Character                                                                                                                                                |                                                                                                |                                                                                                                            |                                                                                                      |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
|                                                                                             |                                              |                                                                          |                                                                                                     |                                                                                                              |                                                                                  | Consider Identical Consecutive separators as a Unique One Consider Different Consecutive Separators as a Unique One Double Quote as String Delimiters Single Quote as String Delimiters |                                                                                                |                                                                                                                            |                                                                                                      |  |
|                                                                                             |                                              |                                                                          |                                                                                                     |                                                                                                              |                                                                                  |                                                                                                                                                                                         |                                                                                                |                                                                                                                            |                                                                                                      |  |
| Quarter 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                               | Month  1  1  1  1  1  1  1  1  1  1  1  1  1 | Weekday<br>2<br>3<br>4<br>5<br>6<br>7<br>1<br>2<br>3<br>4<br>5<br>5<br>6 | End-of-Mo<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 21.2813211<br>19.2473639<br>23.0072467<br>13.7276643<br>3.16579608<br>8.58478816<br>49.0430109<br>48.0059201 | 35.6855229<br>38.5054350<br>31.5457482<br>23.6243470<br>27.6885911<br>58.0322582 | 9.96128288<br>31.8617596<br>28.4687063<br>20.6922342<br>12.8541668<br>7.51840698<br>4.15482878<br>34.7903646                                                                            | 16.6983126<br>27.1236819<br>9.00362336<br>4.36383216<br>1.79239408<br>32.0215054<br>49.6942371 | 32.7752257<br>10.3516514<br>7.80920491<br>12.5090584<br>18.5672537<br>34.4188431<br>27.9639347<br>31.6578220<br>25.7330030 | 235.48201<br>212.64031<br>279.77521<br>217.12078<br>103.70346<br>109.98872<br>318.55539<br>355.06115 |  |

## Data Import Wizard

🗋 🗁

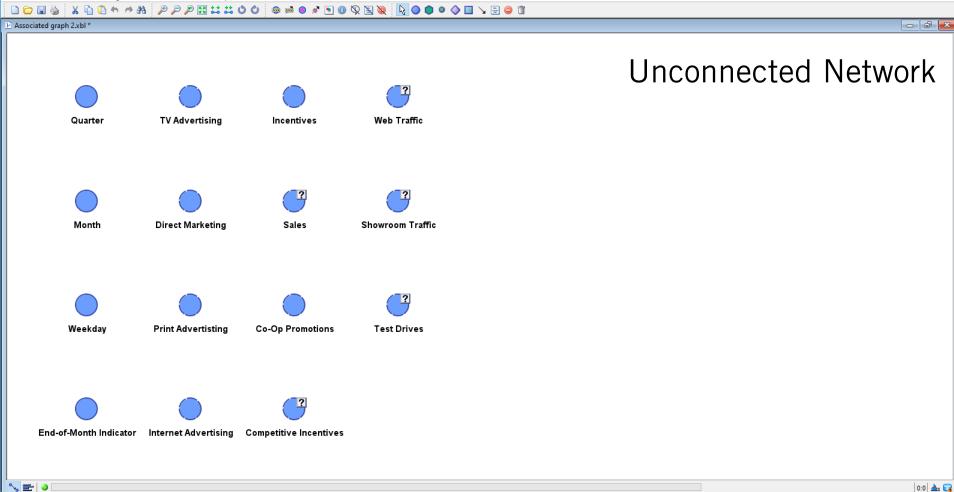
| Type Action                    |       | Information      |                |                |                          |            |              |            |            |
|--------------------------------|-------|------------------|----------------|----------------|--------------------------|------------|--------------|------------|------------|
| O Not Distributed Columns with |       | Columns with Mis | sing Values    | Number of Ro   | ws 16801                 | 100.00%    |              |            |            |
| Discrete     All not Distrib   |       | ibuted           | Not Distribute | d 0            | 0.00%                    |            |              |            |            |
| Continuous All Discrete        |       |                  | Discrete       | 4<br>11<br>0   | 26.67%<br>73.33%         |            |              |            |            |
|                                |       | ete              | Continuous     |                |                          |            |              |            |            |
|                                |       | lous             | Others         |                | 0.00%                    |            |              |            |            |
| OLearning                      | /Test |                  |                | Missing Values | 6                        | 0.00%      |              |            |            |
| O Row Ider                     | lifer |                  |                | Filtered Value | s O                      | 0.00%      |              |            |            |
| Quarter                        | Month | Weekday          | End-of-Mo      | TV Adverti     | Direct Mar               |            |              |            | Sales      |
| 1                              | 1     | 2                | 0              | 33.3727461     | 46.2795596               | 18.8143290 | 14.1863730   | 25.4659327 |            |
| 1                              | 1     | 3                | 0              |                |                          |            | . 17.1100902 |            |            |
| 1                              | 1     | 4                | 0              |                |                          |            | . 7.79241989 |            |            |
| 1                              | 1     | 5                | 0              |                | 37.2109908               |            |              |            |            |
| 1                              | 1     | 6                | 0              |                | 6.69831269<br>35.6855229 |            |              |            |            |
| 1                              | 1     | 1                | 0              |                |                          |            | . 9.00362336 |            |            |
| 1                              | 1     | 2                | o              |                |                          |            | 4.36383216   |            |            |
| 1                              | 1     | 3                | ő              |                |                          |            | 1.79239408   |            |            |
| 1                              | 1     | 4                | 0              | 49.0430109     | 27.6885911               | 34.7903646 | 32.0215054   | 31.6578220 | 318.555398 |
| 1                              | 1     | 5                | 0              | 48.0059201     | 58.0322582               | 47.3061859 | 49.6942371   | 25.7330030 | 355.061154 |
| 1                              | 1     | 6                | 0              |                |                          |            | . 29.3500379 |            |            |
| 1                              | 1     | 7                | 0              |                |                          |            | . 32.0630377 |            |            |
| 1                              | 1     | 1                | 0              | 29.1636534     | 54.5759953               | 17.5206372 | . 12.6097153 | 36.6784392 | 287.837859 |

## Variable Type Definition

0

| Missing Value     | and Filtering       |                                 |          |                              | Information              |            |                    |              |           |
|-------------------|---------------------|---------------------------------|----------|------------------------------|--------------------------|------------|--------------------|--------------|-----------|
| Filter            | crroccasing         |                                 |          | Number of Rows 16801 100.00% |                          |            |                    |              |           |
|                   | OR                  |                                 |          | Not Distributed 0 0.009      |                          |            |                    |              |           |
|                   | AND                 |                                 |          |                              | Discrete                 | 4          | 26.67%             |              |           |
| Replace           |                     |                                 | <u>_</u> | Continuous                   | 11                       | 73.33%     |                    |              |           |
|                   | Value               |                                 | <u> </u> |                              | Others                   | 0          | 0.00%              |              |           |
|                   | vaiue<br>Mean/Modal |                                 |          |                              | Missing Value            | s 6        | 0.00%              |              |           |
|                   | Mean/Modal          |                                 |          |                              | Filtered Value           |            | 0.00%              |              |           |
| ) Infer           |                     |                                 |          |                              | Select Values            |            |                    |              |           |
|                   | Static Imputation   |                                 |          | O OR                         |                          |            | Delete Selections  |              |           |
|                   | Dynamic Imputat     | tion                            |          | AND                          |                          |            | Display Selections |              |           |
|                   | Structural EM       |                                 |          |                              |                          |            | Display Selections |              |           |
| $\bigcirc$        | Entropy-Based S     | tatic Imputation                |          |                              |                          |            |                    |              |           |
| Data<br>Ouarter 🗸 |                     | )ynamic Imputation<br>Weekday 😎 | End-of 💌 | TV Adv 🔻                     | Direct M 🔻               | Print Ad 🔻 | Interne v          | Incentives 🗸 | Sales 🛚 🗸 |
| 1                 | 1                   | 2                               | 0        |                              | 46.2795596               |            |                    |              |           |
| 1                 | 1                   | 3                               | 0        |                              | 50.6651354               |            |                    |              |           |
| 1                 | 1                   | 4<br>5                          | 0        |                              | 21.6886298<br>37.2109908 |            |                    |              |           |
|                   | 1                   | 6                               | 0        |                              | 6.69831269               |            |                    |              |           |
| 1                 |                     |                                 |          |                              |                          |            |                    |              | >         |
| 1                 |                     |                                 | Select   | All Continuous               | Select All D             | Discrete   |                    |              |           |
| 1                 |                     |                                 | Jelecti  |                              |                          |            |                    |              |           |

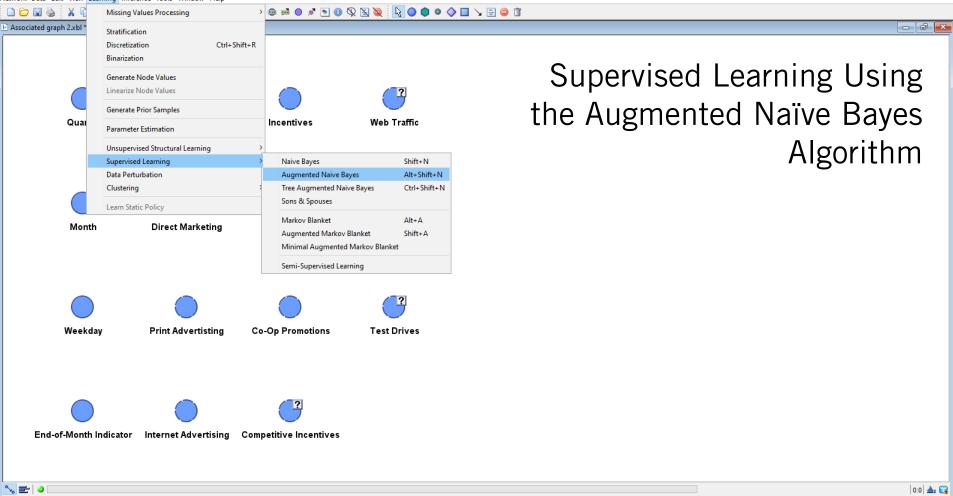
# Missing Values Processing


🛂 Data Import  $\times$ Discretization and Aggregation Discretization Manual Type  $\sim$ 18.14% 0.016 Maximum 0.015-Minimum 0.014 Threshold Value 18.018616 0.013 0.012-Previous Next 0.011\* Distribution Function 0.010-0.009-Generate a Discretization 0.008\* Transfer the Discretization Thresholds 0.007 0.006-Create a class for each type of discretization 0.005 Load Discretizations 0.004-0.003-20 30 40 60 70 10 50 80 Data Month Weekday End-of-Mo... TV Adverti... Direct Mar... Print Adve... Internet A... Incentives Quarter Sales 1 0 33.3727461... 46.2795596... 18.8143290... 14.1863730... 25.4659327. 3 **39.2201805... 50.6651354... 22.1766038... 17.1100902... 32.7752257... 325.51833** 0 0.58483979... 21.6886298... 9.96128288... 7.79241989... 10.3516514... 99.6351953 4 0 1 0 1 5 21.2813211... 37.2109908... 31.8617596... 47.2109908... 7.80920491... 235.482011 < > Select All Continuous Select All Discrete Finish Cancel Previous

## Discretization

#### 🔀 BayesiaLab - Associated graph 2.xbl

Associa...


Network Data Edit View Learning Inference Tools Window Help



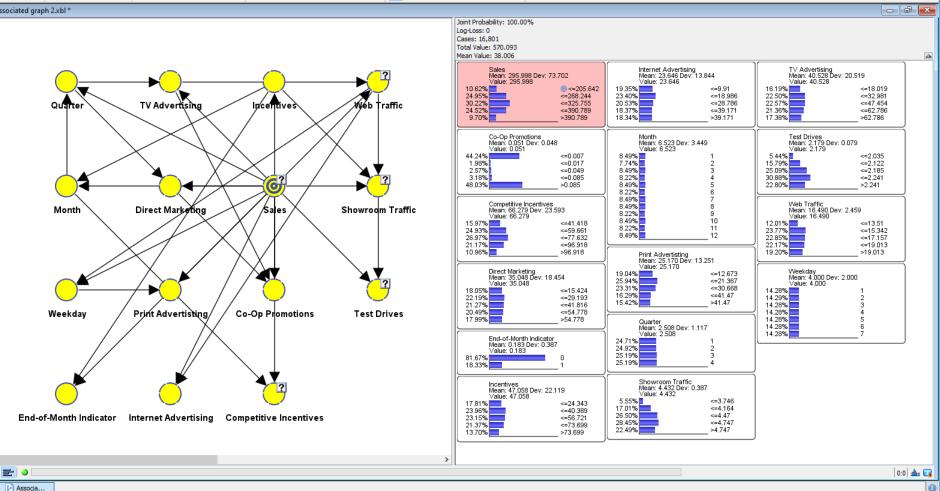
Δ

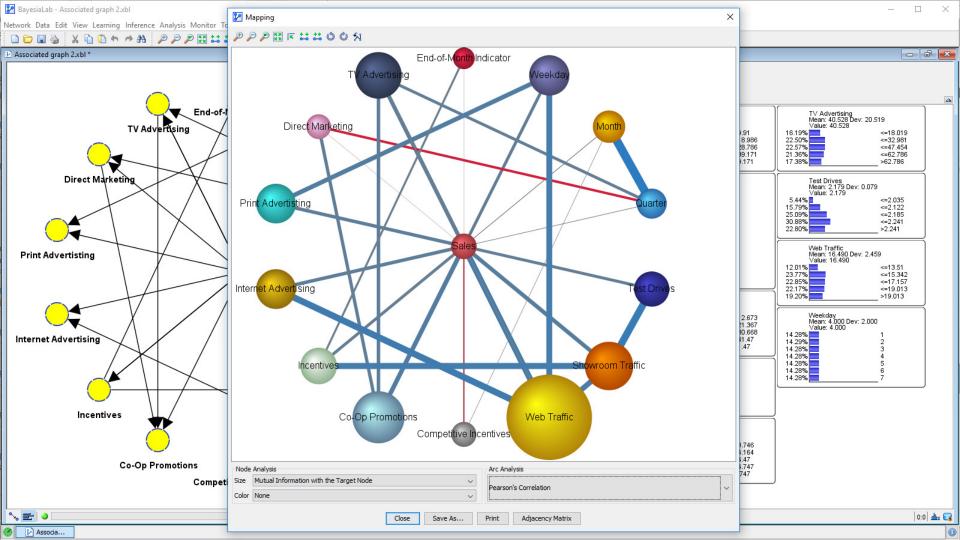
Associa...

Network Data Edit View Learning Inference Tools Window Help



#### BayesiaLab - Associated graph 2.xbl


Network Data Edit View Learning Inference Analysis Monitor Tools Window Help


#### 

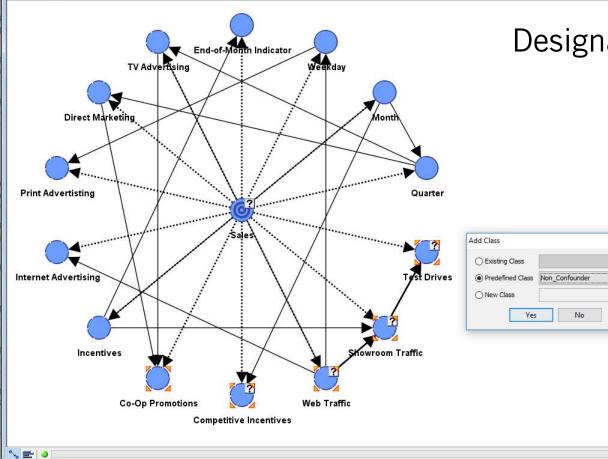
#### Associated graph 2.xbl \*

<

°⊾ ☴ 🧿






🚱 BayesiaLab - Associated graph 2.xbl

Network Data Edit View Learning Inference Tools Window Help

#### □ 🗀 🖕 🕺 🖞 🖞 👘 🕫 🦛 👭 🖉 🖉 🗮 🗰 ଓ ଓ ଓ 👄 🖬 👁 🖉 🖻 🔍 📉 💊 💭 🛇 🖬 🗸 🖶 🤤 🗊

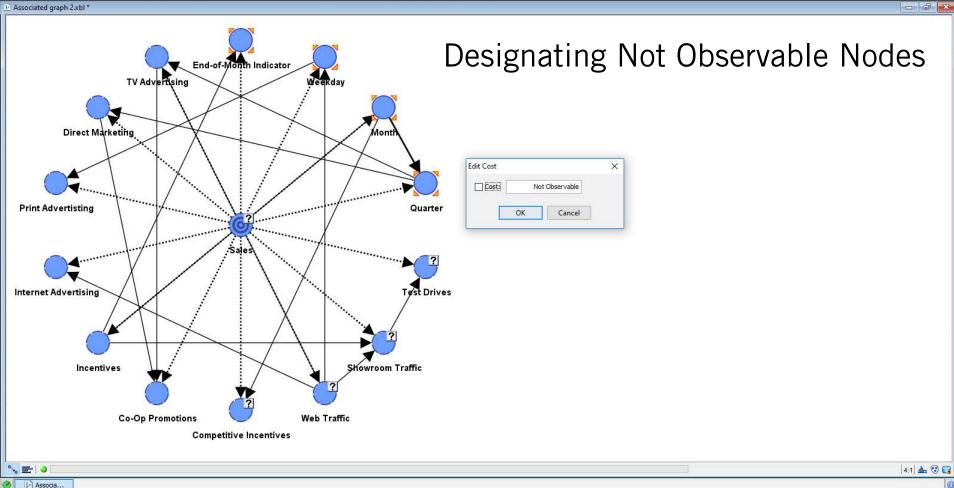
#### Associated graph 2.xbl \*

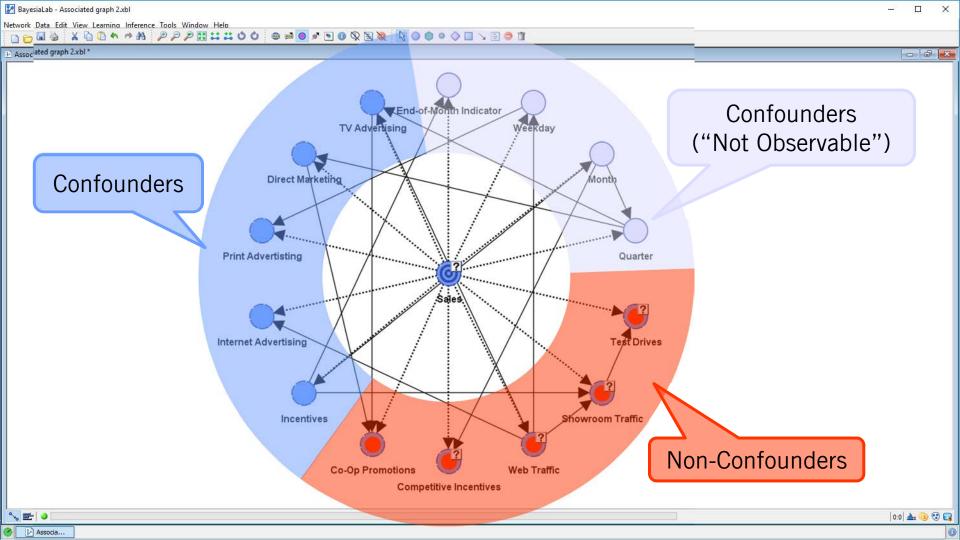
Associa...



## **Designating Non-Confounders**

X


X

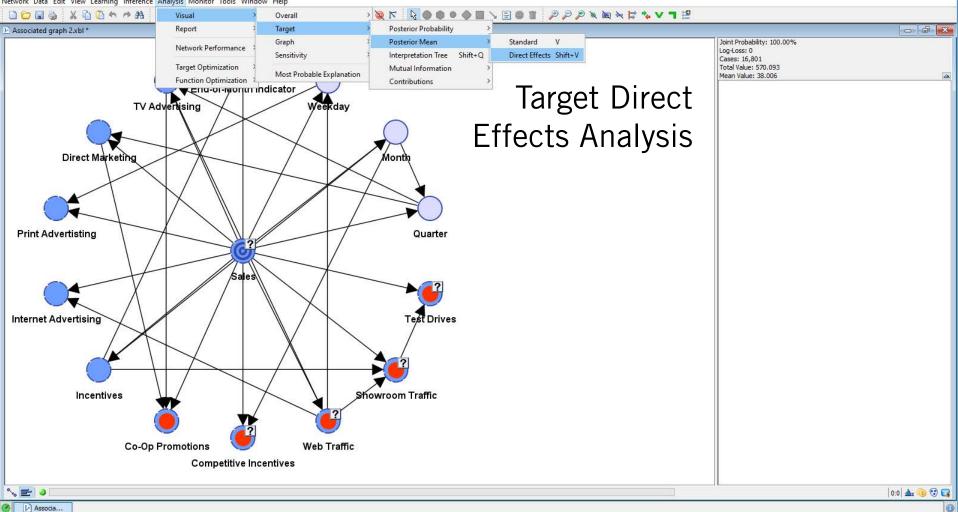




Network Data Edit View Learning Inference Tools Window Help

#### □ □ □ ↓ ↓ □ □ ← # # ₽ ₽ ₽ Ⅲ ∷ ∷ ○ ○ ⊕ = ● # ● # ■ 0 𝔅 N ≥ ↓ □ ↓ Ξ ● □

#### Associated graph 2.xbl \*



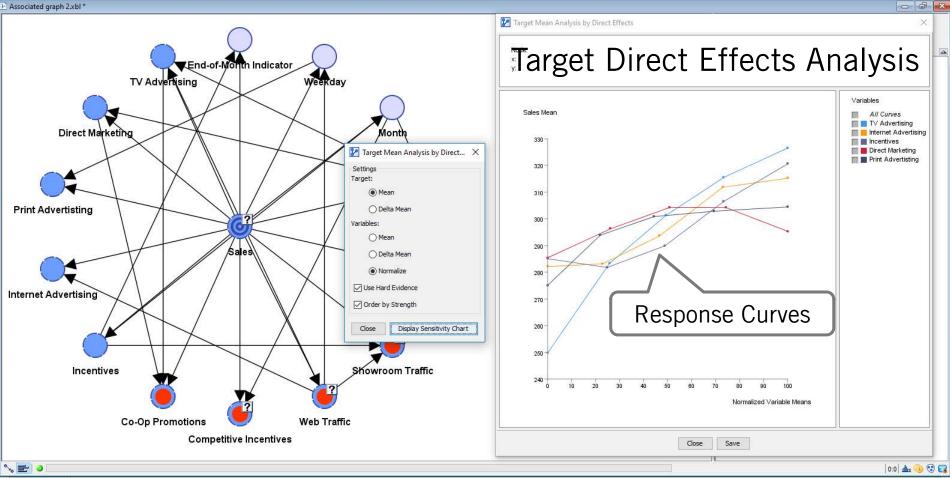







Network Data Edit View Learning Inference Analysis Monitor Tools Window Help



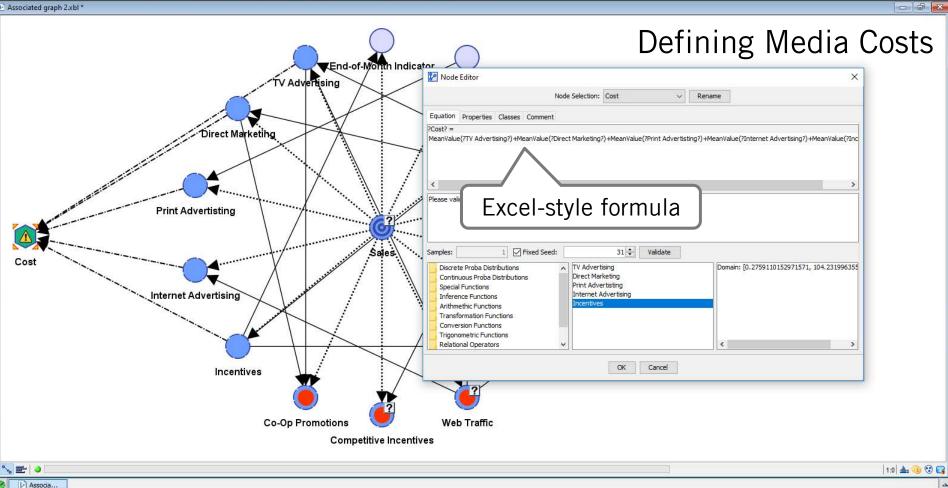

P BayesiaLab - Associated graph 2.xbl

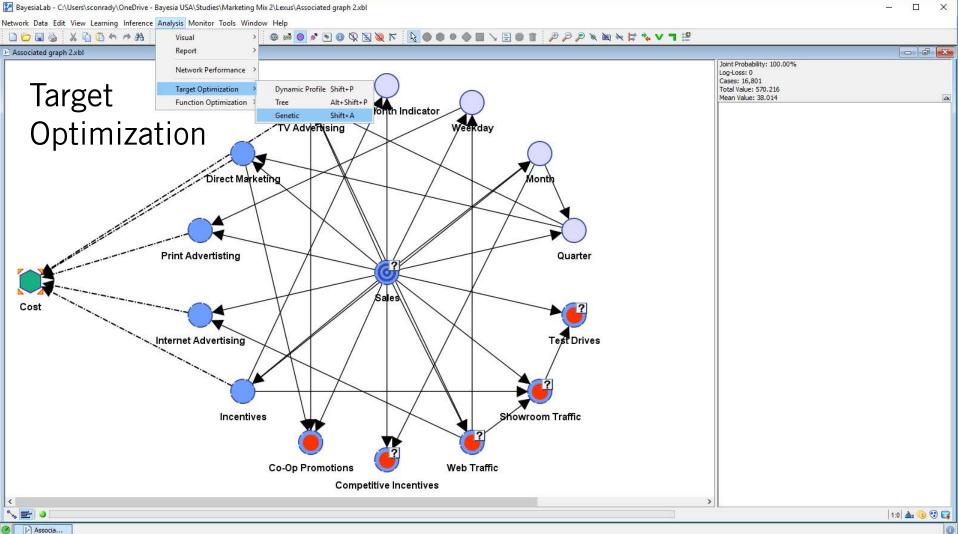
Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

#### 

#### Associated graph 2.xbl \*

Associa...



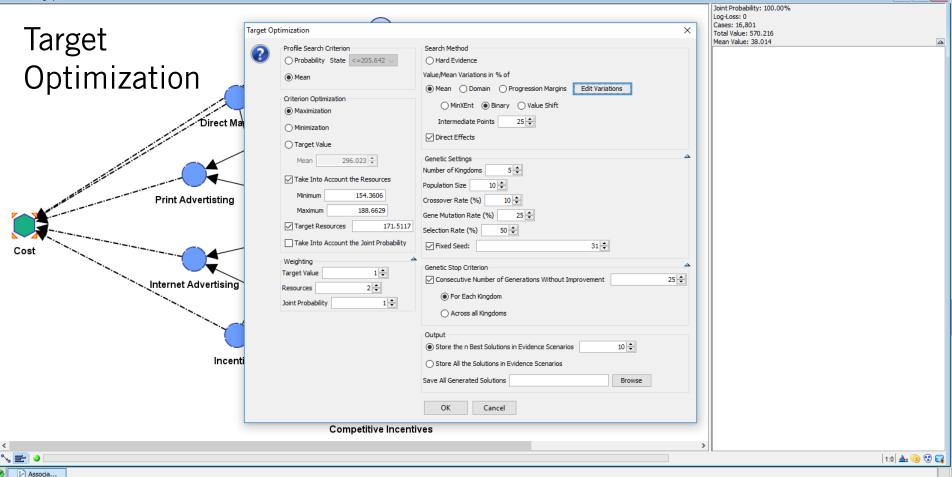


28 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Studies\Marketing Mix 2\Lexus\Associated graph 2.xbl

Network Data Edit View Learning Inference Tools Window Help

#### 

#### Associated graph 2.xbl \*






🔀 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Studies\Marketing Mix 2\Lexus\Associated graph 2.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

#### □ 🗀 🖶 🕹 🐰 🖞 🖞 ಈ 🖻 👭 🖉 🔎 🖉 🗮 😂 🕐 🕑 📾 🚔 💽 🖉 🐼 💽 🔍 🔯 🗮 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉

#### Associated graph 2.xbl \*



- 6 ×

😰 BayesiaLab - C:\Users\sconrady\OneDrive - Bayesia USA\Studies\Marketing Mix 2\Lexus\Associated graph 2.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

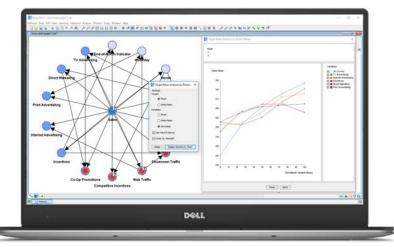
#### 

Associa...

| Associated graph                                                                                                             | n 2.xbl ^          |                    |                        |                   |                                                    |                                               |     |                                                            |                                                            |                                                    |
|------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|------------------------|-------------------|----------------------------------------------------|-----------------------------------------------|-----|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|
|                                                                                                                              |                    |                    |                        |                   |                                                    |                                               |     | Joint Probability: 3.76927E-4%                             |                                                            |                                                    |
| Optimization Report of Sales (Associated graph 2) - 🗆 🗙                                                                      |                    |                    |                        |                   |                                                    |                                               |     | Log-Loss: 18.02<br>Cases: 0.06                             |                                                            |                                                    |
| Tota                                                                                                                         |                    |                    |                        |                   |                                                    |                                               |     | Total Value: 599.986                                       |                                                            |                                                    |
| Initial State                                                                                                                |                    |                    |                        |                   |                                                    | Mean Value: 39.999 Resources: 171.567 (0.055) |     |                                                            |                                                            |                                                    |
|                                                                                                                              |                    | n+                 | imiza                  | tian [            | Daaulti                                            | <b>~</b>                                      | 1   |                                                            |                                                            |                                                    |
| Value/Mean Resources Optimization Results                                                                                    |                    |                    |                        |                   |                                                    |                                               |     | Sales<br>Mean: 327.544 Dev: 60.594                         | TV Advertising<br>Mean: 48.318 Dev: 8.439                  | Co-Op Promotions<br>Mean: 0.075 Dev: 0.041         |
| 296.0229                                                                                                                     | 171.5117           |                    |                        |                   |                                                    |                                               |     | Value: 327.544 (+31.521)<br>1.97% [ ◎ <=205.642            | Value: 48.318 (+7.793)<br>0.00% <= 18.019                  | Value: 0.075 (+0.024)<br>18.59% <=0.007            |
| Course Martha                                                                                                                |                    | -41                | Eller Ein Dechebilit   |                   |                                                    |                                               |     | 12.06% <= 268.244<br>32.21% <= 325.755                     | 0.00% <=32.981<br>44.07% <=47.454                          | 2.72% <=0.017<br>3.96% <=0.049                     |
| Search Method: Value/Mean Variations in % of Mean - Fix Probabilities (Binary) - Direct Effects                              |                    |                    |                        |                   |                                                    |                                               |     | 41.40% <=390.789<br>12.36% >390.789                        | 55.93% <=62.786<br>0.00% >62.786                           | 4.12% <=0.085<br>70.61% >0.085                     |
| Not Fixed Nodes                                                                                                              |                    |                    |                        |                   |                                                    |                                               |     | 230.709                                                    |                                                            |                                                    |
| Node Non Confounder Factor Not Observable                                                                                    |                    |                    |                        |                   |                                                    |                                               |     | Quarter<br>Mean: 2.508 Dev: 1.117                          | Direct Marketing<br>Mean: 39.095 Dev: 6.730                | Competitive Incentives<br>Mean: 63.631 Dev: 23.443 |
| Co-Op Promo                                                                                                                  | tions X            |                    |                        |                   |                                                    |                                               |     | Value: 2.508 (+0.000)<br>24.72% 1                          | Value: 39.095 (+4.044)<br>0.00%                            | Value: 63.631 (-2.686)<br>19.05% <=41.418          |
| Test Drives                                                                                                                  | х                  |                    |                        |                   |                                                    |                                               |     | 24.92% 2<br>25.18% 3                                       | 0.00% <=29.193<br>71.76% <=41.816                          | 26.86% <=59.661<br>26.27% <=77.632                 |
| Competitive In                                                                                                               | ncentives X        |                    |                        |                   |                                                    |                                               |     | 25.18% 4                                                   | 28.24% <=54.778<br>0.00% >54.778                           | 18.78% <a><br/> 9.04% <a>&gt;96.918</a></a>        |
| Showroom Tra                                                                                                                 | affic X            |                    |                        |                   |                                                    |                                               |     | Month                                                      |                                                            |                                                    |
| Web Traffic                                                                                                                  | Х                  |                    |                        |                   |                                                    |                                               | 7   | Mean: 6.523 Dev: 3.449<br>Value: 6.523 (+0.000)            | Print Advertisting<br>Mean: 24,226 Dev: 4,260              | Web Traffic<br>Mean: 17.515 Dev: 1.837             |
|                                                                                                                              |                    |                    |                        |                   |                                                    |                                               | 1   | 8.48% 1<br>7.75% 2                                         | Mean: 24.226 Dev: 4.260<br>Value: 24.226 (-0.969)<br>0.00% | Value: 17.515 (+1.029)<br>1.54%                    |
| Synthesis                                                                                                                    |                    |                    |                        |                   |                                                    |                                               |     | 8,48% 3<br>8,22% 4                                         | 17.73% <==21.367<br>82.27% <=30.668                        | 7.74% <=15.342<br>32.79% <=17.157                  |
| Nodes                                                                                                                        | Incentives         |                    | ceting TV Advertising  |                   | g Print Advertisting                               |                                               | -   | 8.48% 5                                                    | 0.00% <=41.47                                              | 35.87% ====================================        |
| Initial State                                                                                                                | 47.0845            |                    | 6.0508 40.5250         |                   |                                                    |                                               |     | 8.22% 6<br>8.48% 7                                         | 0.00%                                                      | 22.05% >19.013                                     |
| Best Solution                                                                                                                | 25.3532 (-21.7313) | 39.0952 (4.        |                        | 34.5745 (10.918)  |                                                    |                                               |     | 8.48% 8<br>8.22% 9                                         | Internet Advertising<br>Mean: 34.574 Dev: 3.948            | Showroom Traffic                                   |
| Min                                                                                                                          | 25.3532 (-21.7313) | 26.9622 (-8.       |                        | ) 31.8450 (8.188) |                                                    |                                               |     | 8.48% 10<br>8.22% 11                                       | Value: 34.574 (+10.918)                                    | Mean: 4.282 Dev: 0.328<br>Value: 4.282 (-0.148)    |
| Max                                                                                                                          | 36.2189 (-10.8657) | 39.0952 (4.        | .0443) 48.3183 (7.7933 | ) 35.4844 (11.828 | 1) 30.0403 (4.8452)                                |                                               |     | 8.48% 12                                                   | 0.00% <=9.91<br>0.00% <=18.986                             | 5.79% <=3.746<br>26.33% <=4.164                    |
|                                                                                                                              |                    |                    |                        |                   |                                                    |                                               |     |                                                            | 0.00% <= 28.786<br>93.93% <= 39.171                        | 39.42% <=4.47<br>25.52% <=4.747                    |
| Best Solutions Incentives Direct Marketing TV Advertising Internet Advertising Print Advertisting Score Value/Mean Resources |                    |                    |                        |                   |                                                    |                                               |     | Weekday<br>Mean: 4.000 Dev: 2.000<br>Value: 4.000 (-0.000) | 6.07% =                                                    | 2.94% >4.747                                       |
|                                                                                                                              | -                  | -                  | -                      | -                 |                                                    | Resources                                     |     | 14.29% 1                                                   | Incentives                                                 | Test Drives                                        |
| 25.3532                                                                                                                      | 39.0952            | 48.3183            | 34.5745                |                   | 340 327.5442 (31.5213)                             | 171.5671 (0.0554)                             |     | 14.29% 2<br>14.29% 3                                       | Mean: 25.353 Dev: 9.613<br>Value: 25.353 (-21.731)         | Mean: 2.153 Dev: 0.075<br>Value: 2.153 (-0.026)    |
| 27.1641                                                                                                                      | 36.3989            | 48.3183            | 34.5745                |                   | 3463 326.8260 (30.8031)                            | 171.6510 (0.1393)                             |     | 14.29% 4<br>14.28% 5                                       | 43.66% <=24.343<br>56.34% <=40.389                         | 7.00% <=2.035 23.69% <=2.122                       |
| 25.3532                                                                                                                      | 39.0952            | 48.3183            | 34.5745                |                   | 5827 328.2943 (32.2714)                            | 172.5361 (1.0244)                             |     | 14.28% 6<br>14.28% 7                                       | <b>0.00%</b> <=56.721                                      | 33.37%                                             |
| 27.1641<br>30.7860                                                                                                           | 36.3989            | 42.0837<br>48.3183 | 35.4844<br>33.6647     |                   | 7003 322.8792 (26.8563)<br>7175 321.5962 (25.5733) | 171.1714 (-0.3404)                            | ľ   |                                                            | 0.00% <=73.699<br>>73.699                                  | 27.94% <=2.241<br>8.01% >2.241                     |
| 30.7860                                                                                                                      | 28.3103            | 48.3183            | 33.0647<br>31.8450     |                   | 7504 317.0880 (21.0651)                            | 171.1198 (-0.3920)<br>171.4467 (-0.0650)      |     | End-of-Month Indicator<br>Mean: 0.188 Dev: 0.391           |                                                            |                                                    |
| 36.2189                                                                                                                      | 26.9622            | 48.3183            | 31.8450                |                   | 3097 320.4690 (24.4461)                            | 173.2665 (1.7548)                             | F   | Value: 0.188 (-0.000)<br>81.21% 0                          |                                                            | Cost                                               |
| 30.2169                                                                                                                      | 20.9022            | 40.3183            | 55.0047                | 20.1022 1.8       | 320.4090 (24.4401)                                 | 173.2003 (1.7548)                             | ~ " | 18.79%                                                     |                                                            | 171.5671321886                                     |
|                                                                                                                              |                    |                    | Close Save /           | As Print          |                                                    |                                               |     |                                                            |                                                            | (171.5117434445)                                   |
|                                                                                                                              |                    |                    |                        |                   |                                                    |                                               | >   |                                                            |                                                            |                                                    |
| . 🖃 🧿 🗔                                                                                                                      |                    |                    |                        |                   |                                                    |                                               |     |                                                            | GA Score: 1.6339506                                        | 16:34 📥 🔞 😌 🏣 🕞                                    |

х




# **Concluding Remarks**

# **BayesiaLab Trial**

## Try BayesiaLab Today!

- Download Demo Version:
   <u>www.bayesialab.com/trial-download</u>
- Apply for Unrestricted Evaluation Version: <u>www.bayesialab.com/evaluation</u>





# **Upcoming Events**

## Webinars & Seminars:

 September 21 Webinar: Adversarial Reasoning
 November 13 Seminar in Arlington, VA Artificial Intelligence for Intelligence Analysis
 November 15 Seminar in New York City: Health Economics with Bayesian Networks

### Register here: bayesia.com/events



# **BayesiaLab Courses Around the World in 2018**

- October 29–31
   Introductory Course
   Chicago, IL
- November 13–15
   Introductory Course
   McLean, VA (internal)
- November 16–20
   Advanced Course
   McLean, VA (internal)
- December 10–12
   Introductory Course
   Sydney, Australia



Learn More & Register: bayesia.com/events



# 6TH ANNUAL BAYESIALAB CONFERENCE 2018

BayesiaLab.com

# Thank You!



stefan.conrady@bayesia.us



BayesianNetwork



linkedin.com/in/stefanconrady



facebook.com/bayesia

