bayesia logo
BayesiaLab
Webinar Black Swans and Bayesian Networks

Webinar: Black Swans & Bayesian Networks

Context

Even though we may not have any actual observations from a domain, we can still speculate and hypothesize about possible rare events, i.e., we can reason on theoretical grounds as to what could possibly go wrong.

The objective of this webinar is to present Bayesian networks as a framework to merge machine-learned knowledge from data with theoretical knowledge from domain experts to produce a joint probability distribution that includes common and rare events simultaneously.

The case study we present addresses some of the challenges of Modern Portfolio Theory and was inspired by Rebonato & Denev's book, Portfolio Management Under Stress (opens in a new tab).

Presentation Video

Presentation Materials

Bayesian Network Optimization Model.xbl (opens in a new tab)

Maritime Stock Returns.csv (opens in a new tab)

2019-07-19-Black-Swans.pdf (opens in a new tab)

About the Presenter

Stefan Conrady has over 20 years of experience in decision analysis, analytics, market research, and product strategy with Mercedes-Benz, BMW Group, Rolls-Royce Motor Cars, and Nissan, which included assignments in North America, Europe, and Asia.

Today, in his role as Managing Partner of Bayesia USA and Bayesia Singapore, he is recognized as a thought leader in applying Bayesian networks for research, analytics, and reasoning.

Recently, Stefan and his colleague Dr. Lionel Jouffe co-authored Bayesian Networks & BayesiaLab — A Practical Introduction for Researchers, which is now available as an e-book.


Copyright © 2024 Bayesia S.A.S., Bayesia USA, LLC, and Bayesia Singapore Pte. Ltd. All Rights Reserved.