SopLEQ
Context
- The SopLEQ search algorithm is based on a global characterization of data and on the exploitation of the equivalence properties of Bayesian networks.
- Fixed Arcs are treated as normal arcs but Forbidden Arcs are observed.
- Temporal Indices are also taken into account.
References
-
L. Jouffe, Nouvelle classe de méthodes d'apprentissage de réseaux bayésiens, Journées francophones d'Extraction et de Gestion des Connaissances (EGC), Montpellier, janvier 2002.
-
P. Munteanu, M. Bendou, The EQ Framework for Learning Equivalence Classes of Bayesian Networks, First IEEE International Conference on Data Mining (IEEE ICDM), San José, novembre 2001.
-
L. Jouffe, P. Munteanu, New Search Strategies for Learning Bayesian Networks, Proceedings of the Tenth International Symposium on Applied Stochastic Models, Data Analysis, Compiègne, juin 2001.