Skip to Content

Information Analysis (5.0.2)

Overview

Information analysis with three sets of nodes (X, Y, and Z)

Clicking on the Select Nodes buttons allows defining three sets of nodes for analysis. The selection is done by directly selecting the nodes in the graph. By default, the Target node is associated with the Y set.

2981986 2981987

Information Analysis Report

Given the exponential growth of the state space, this analysis is only performed on the database.

2981990

Unconditional Entropy

H(X)=xXp(x)log2(p(x))H(X) = -\sum_{x \in X} p(x) \log_2(p(x))
2981992 2981993

Conditional Entropy

H(XZ)=zZp(z)xXp(xz)log2(p(xz))H(X|Z) = -\sum_{z \in Z} p(z) \sum_{x \in X} p(x|z) \log_2(p(x|z))
2981994 2981996

Unconditional Mutual Information

I(X,Y)=H(X)H(XY)I(X, Y) = H(X) - H(X|Y)
2981997

Conditional Mutual Information

I(X,YZ)=H(XZ)H(XY,Z)I(X, Y|Z) = H(X|Z) - H(X|Y,Z)
2981999 2982001 2982002

Total Correlation

C(X)=iH(xi)H(X)C(X) = \sum_i H(x_i) - H(X)
2981999

Conditional Total Correlation

C(XZ)=iH(xiZ)H(XZ)C(X|Z) = \sum_i H(x_i|Z) - H(X|Z)
2981999