Continuous Probability Distributions
Normal(x, m, s)
-
Description: Normal distribution of
xwith meanmand standard deviations. -
Number of parameters: 3
-
Parameter type: numerical, numerical, numerical
-
Result type: real
Example
The probability distribution below corresponds to Normal(?N1?, 0.3, 0.1):
Triangular(x, m, l, r)
-
Description: Triangular probability distribution of
xwith modal valuem, left deviationl, and right deviationr. -
Number of parameters: 4
-
Parameter type: numerical, numerical, numerical, numerical
-
Result type: real
Example
The probability distribution below corresponds to Triangular(?N1?, 0.5, 0.2, 0.4):
Cauchy(x, m, s)
-
Description: Cauchy probability distribution of
xwith modal valuemand scales. -
Number of parameters: 3
-
Parameter type: numerical, numerical, numerical
-
Result type: real
Example
The probability distribution below corresponds to Cauchy(?N1?, 0.5, 0.1):
Exponential(x, l)
-
Description: Exponential probability distribution of
xwith lambda =l. -
Number of parameters: 2
-
Parameter type: numerical, numerical
-
Result type: real
Example
The probability distribution below corresponds to Exponential(?N1?, 2):
Weibull(x, a, l)
- Description: Weibull probability distribution of
x. Note thatWeibull(x, 1, l)=Exponential(x, l). - Number of parameters: 3
- Parameter type: numerical, numerical, numerical
- Result type: real
Example
The probability distribution below corresponds to Weibull(?N1?, 1.5, 1.5):
Gamma(x, a, l)
Density:
- Description: Gamma probability distribution of
x.Gamma(x, 1, l)=Exponential(x, l). - Number of parameters: 3
- Parameter type: numerical, numerical, numerical
- Result type: real
Example
The probability distribution below corresponds to Gamma(?N1?, 1.5, 1.5):
Beta(x, a, b, bi, bs)
- Description: Beta probability distribution of
x. The last two parameters represent the lower and upper bounds of the variable, with default values 0 and 1. - Number of parameters: 5
- Parameter type: numerical, numerical, numerical, numerical, numerical
- Result type: real
Example
The probability distribution below corresponds to Beta(?N1?, 2, 5, 0, 5):
ChiSquare(x, n)
- Description: Chi-Square probability distribution of
xwithndegrees of freedom. - Number of parameters: 2
- Parameter type: numerical, integer
- Result type: real
Example
The probability distribution below corresponds to ChiSquare(?N1?, 3):
LogNormal(x, m, s)
- Description: Log-normal probability distribution of
x. - Number of parameters: 3
- Parameter type: numerical, numerical, numerical
- Result type: real
Example
The probability distribution below corresponds to LogNormal(?N1?, 0.4, 0.8):
Uniform(x, a, b)
- Description: Uniform probability distribution of
xon the interval [a, b]. - Number of parameters: 3
- Parameter type: numerical, numerical, numerical
- Result type: real