Causal Structural Priors


With the Causality Analysis function, Hellixia allows you to retrieve domain knowledge from ChatGPT about a potential causal relationship between two nodes.

The Causal Structural Priors function extends this concept to more than two nodes.

Usage & Example

  • We illustrate the Causal Structural Priors workflow with the well-known "Visit Asia" example from the domain of lung diseases.

  • We have a synthetic dataset from this domain, which has already been imported into BayesiaLab.

  • So, our starting point is an unconnected network, as shown in the following screenshot.

  • For instance, the node Smoking has an associated Node Comment that says, "The patient is a regular smoker."

  • Our objective is to find the causal relationships between risk factors, conditions, symptoms, and diagnostic imaging.

  • However, we know that machine learning alone cannot discover the true causal structure of this domain.

  • We begin with machine learning the associations between all nodes anyway and use the Unsupervised EQ learning algorithm for that purpose.

  • This newly-learned Bayesian network features directed arcs, but they can clearly not be interpreted as causal, e.g., Smoking could not possibly be a cause of Age.

  • Applying the Genetic Grid layout highlights the implausibility of the arc directions.

  • Select Main Menu > View > Layout > Genetic Grid Layout > Top-Down Repartition.

  • In the past, we would have had to use any available domain knowledge from experts to correct the arc directions.

  • With Hellixia, however, we can tap into the domain knowledge available via ChatGPT.

  • So, select all arcs and then select Main Menu > Hellixia > Causal Structural Priors.

  • In the Causal Structural Priors window, you need to specify a number of items:

    • Under Completion Model, choose a model for which you have a subscription, e.g., GPT_35 or GPT_4.

    • You can specify a General Context of the problem domain. In this example, "Lung Diseases" would be appropriate.

    • Under Subject of the Query, check all fields that contain information regarding the subject matter. We have information in the Node Name and the Node Comment in the example.

  • Clicking OK starts the search for causal relationships via ChatGPT. The progress bar at the bottom of the Graph Panel shows the search status.

  • A chime marks the completion of the search.

  • This table displays the causal arc directions obtained from ChatGPT in the three left columns.

  • The reason for the arc orientation is provided in the Explanation column.

  • Clicking Preview opens a window showing a simplified view of the causal arc directions proposed by ChatGPT.

Now, there are two ways to proceed, as illustrated in the following workflows 1 and 2.

Last updated


Bayesia USA

Bayesia S.A.S.

Bayesia Singapore

Copyright ยฉ 2024 Bayesia S.A.S., Bayesia USA, LLC, and Bayesia Singapore Pte. Ltd. All Rights Reserved.